• Title/Summary/Keyword: leaf and root nutrient

Search Result 122, Processing Time 0.03 seconds

Arbuscular-Mycorrhizae Formation and Nutrient Status of Citrus Plants in Cheju (제주 감귤원에서 Arbuscular-Mycorrhizae 형성과 감귤 잎 중의 무기양분 조성)

  • Chung, Jong-Bae;Moon, Doo-Khil;Han, Hae-Ryong;Lim, Han-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.2
    • /
    • pp.181-186
    • /
    • 1997
  • Since volcanic ash soils in Cheju island have high capacities of adsorption and immobilization of phosphate, a relatively high rate of P application has been recommended in citrus orchards for many years and such a large amount of P application could be problematic both in agricultural and environmental point of view. The objective of this study was to test whether arbuscular-mycorrhizae can be used to improve P availability in Cheju citrus orchard soils. Soil, root and leaf samples were taken from 14 citrus orchards of different location and soil texture. Mycorrhizal spore distribution in the soils, mycorrhizal infection ratio on the citrus roots, and mineral nutrients in leaf samples were determined. Numbers of mycorrhizal spore were in the range of $9,000{\sim}40,000/100g$ soil. The population level was not correlated with any of the soil characteristics examined. Mycorrhizae were found in all of the examined orchards and root infection ratio varied between $14{\sim}60%$. The mycorrhizae infection ratio differed substantially in different soils. Although root infection was high at soils with low extractable P level, it was not significantly correlated with other soil factors measured. Since a positive correlation was observed between leaf P concentration and root infection, enhancement of P uptake seemed to be associated with mycorrhizal infection. These results indicate that mycorrhizae could be a useful method to reduce P applications in Cheju citrus orchards.

  • PDF

Plant Uptake of Heavy Metals in Andong Serpentine Soil

  • Kim, Jeong-Myeong;Yang, Keum-Chul;Choi, Sang-Kyoo;Yeon, Myung-Hun;Shin, Jin-Ho;Shim, Jae-Kuk
    • Korean Journal of Environmental Biology
    • /
    • v.24 no.4
    • /
    • pp.408-415
    • /
    • 2006
  • Serpentines soil have high values of magnesium and low values of calcium, and are usually deficient in N and P, but rich in iron, Ni, silicates. We investigated serpentine soil properties and measured the content of nutrient elements and heavy metals in shoots and root of plant species which were in common at serpentine and non-serpentine areas in Andong, Korea. The soils showed higher pH value above 6.9. The contents of Ni, Cr, Fe and Mg of serpentine soils exhibited 77, 27, 5.5 and 12.5 times more than in non-serpentine soils, respectively. The content of Na was almost same but K was two times higher in non-serpentine soil, compared with serpentine soil. The contents of nutrient element such as K, Ca, Na and P in serpentine plants did not show conspicuous differences with non-serpentine plants. On the other hand, the concentrations of Ni, Cr, Fe, Mg and Mg/Ca were very high in plant on serpentine area. The all plant species collected at the serpentine site were bodenvag plants, which are not restricted to a specific type of substrate. By the plant species and parts of plant tissues, the absorption levels and patterns showed high variation and were species-specific. Carex lanceolata, Lysimachia clethroides and Cynanchum paniculatum contained much chromium and Eupatorium chinense and C. paniculatum exhibited high contents of Ni. In leaf tissue, C. lanceolata, Rubus parvifolius, Festuca ovina, Quercus serrata, and L. clethroides took comparatively large amount of Cr in serpentine area. E. chinense contained large amount of Ni, Cr and Fe in a leaf tissue. The stem of Galium verum, Juniperus rigida included high amount of Cr, Ni and Fe. And C. paniculatum absorbed large amount of Ni and Cr in the stem.

Analysis of metabolites in wheat roots in response to salinity stress

  • Kim, Da-Eun;Roy, Swapan Kumar;Kim, Ki-Hyun;Cho, Seong-Woo;Park, Chul-Soo;Lee, Moon-Soon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.200-200
    • /
    • 2017
  • Salinity stress is one of the most important abiotic stresses and severely impairs plant growth and production. Root is the first site for nutrient accumulation like as $Na^+$ in the plant. To investigate the response of wheat root under salinity stress, we executed the characterization of morphology and analysis of metabolites. Wheat seeds cv. Keumgang (Korean cultivar) were grown on the moist filter paper in Petri dish. After 5 days, seedlings were transferred to hydroponic apparatus at 1500 LUX light intensity, at $20^{\circ}C$ with 70% relative humidity in a growth chamber. Seedlings (5-day-old) were exposed to 50mM, 75mM, 100mM NaCl for 5 days. Ten-day-old seedlings were used for morphological characterization and metabolite analysis. Root and leaf length became shorter in high NaCl concentration compared to following NaCl treatment. For confirmation of salt accumulation, wheat roots were stained with $CoroNa^+$ Green AM, and fluoresce, and the image was taken by confocal microscopy. $Na^+$ ion accumulation rate was higher at 100mM compared to the untreated sample. Furthermore, to analyze metabolites in the wheat root, samples were extracted by $D_2O$ solvent, and extracted sample was analyzed by 1H NMR spectroscopy. Fourteen metabolites were identified in wheat roots using NMR spectroscopy. Methanol and ethanol were up-regulated, whereas formate, aspartate, aminobutyrate, acetate and valine were down-regulated under salinity stress on roots of wheat. Fumarate had no change, while glucose, betaine, choline, glutamate and lactate were unevenly affected during salinity stress.

  • PDF

Effect of Nutrient Solution Strength on Growth of Phalaenopsis in an Ebb and Flow System (Ebb and Flow 시스템을 이용한 호접란 수경재배시 생장에 미치는 배양액 농도의 영향)

  • An, Dong-Choon;Park, Seon-Hye;Been, Chul-Gu;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.199-204
    • /
    • 2007
  • This experiment was conducted to investigate the effect of nutrient solution strength on the growth of miniature multiflora P. amabilis and P. Taisuco Red Jewel at two growth stages during four months cultivation in an ebb and flow system. Early stage plants gained the biggest leaf length and width when nutrient solution strength was EC 0.5 or $1.0dS{\cdot}m^{-1}$ in P. amabilis, and EC $1.5dS{\cdot}m^{-1}$ in P. Taisuco Red Jewel. Root length and weight were the greatest when nutrient solution strength was EC $0.5dS{\cdot}m^{-1}$ in both cultivars and this trend was also found in middle stage plants. Fresh and dry weights of leaves increased as nutrient solution strength was elevated and were the greatest when nutrient solution strength was EC $1.5dS{\cdot}m^{-1}$ in P. amabilis. On the contrary elevation of nutrient solution strength decreased fresh weight of roots, being the greatest when nutrient solution strength was EC $0.5dS{\cdot}m^{-1}$. This trend was also found in P. Taisuco Red Jewel and P. amabilis at middle growth stage. The T/R ratio and chlorophyll content increased with nutrient solution strength and were the greatest regardless of cultivar and growth stage when nutrient strength was EC $1.5dS{\cdot}m^{-1}$.

Investigation of Root Morphological and Architectural Traits in Adzuki Bean (Vigna angularis) Cultivars Using Imagery Data

  • Tripathi, Pooja;Kim, Yoonha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.1
    • /
    • pp.67-75
    • /
    • 2022
  • Roots play important roles in water and nutrient uptake and in response to various environmental stresses. Investigating diversification of cultivars through root phenotyping is important for crop improvement in adzuki beans. Therefore, we analyzed the morphological and architectural root traits of 22 adzuki bean cultivars using 2-dimensional (2D) root imaging. Plants were grown in plastic tubes [6 cm (diameter) × 40 cm (height)] in a greenhouse from July 25th to August 28th. When the plants reached the 2nd or 3rd trifoliate leaf stage, the roots were removed and washed with tap water to remove soil particles. Clean root samples were scanned, and the scanned images were analyzed using the WinRHIZO Pro software. The cultivars were analyzed based on six root phenotypes [total root length (TRL), surface area (SA), average diameter (AD), and number of tips (NT) were included as root morphological traits (RMT); and link average length (LAL) and link average diameter (LAD) were included as root architectural traits (RAT)]. According to the analysis of variance (ANOVA), a significant difference was observed between the cultivars for all root morphological traits. Distribution analysis demonstrated that all root traits except LAL followed a normally distributed curve. In the correlation test, the most important morphological trait, TRL, showed a strong positive correlation with SA (r = 0.97***) and NT (r = 0.94***). In comparison, between RMT and RAT, TRL showed a significantly negative correlation with LAL (r = -0.50***); however, TRL did not show a correlation with LAD. Based on RMT and RAT, we identified the cultivars that ranked 5% from the top and bottom. In particular, the cultivar "IT 236657" showed the highest TRL, SA, and NT, while the cultivar "IT 236169" showed the lowest values for TRL, SA, and NT. In addition, the coefficient of variance for the six tested root traits ranged from (14.26-40%) which suggested statistical variability in root phenotypes among the 22 adzuki bean varieties. Thus, this study will help to select target root traits for the adzuki bean breeding program in the future, generating climate-resilient adzuki beans, especially for drought stress, and may be useful for developing biotic and abiotic stress-tolerant cultivars based on better root trait attributes.

Growth and Development of 'Gutbier V-10 Amy' Poinsettia (Euphorbia pulcherrima Willd.) as Affected by Application of Waste Nutrient Solution (폐양액 시비에 따른 포인세티아 생육)

  • Kim, Ju-Hyoung;Kim, Tae-Joung;Kim, Hag-Hyun;Lee, Hee-Doo;Lee, Jong-Won;Lee, Cheol-Hee;Paek, Kee-Yoeup
    • Horticultural Science & Technology
    • /
    • v.18 no.4
    • /
    • pp.518-522
    • /
    • 2000
  • The objective of this research was to determine the effect of waste nutrient solution (WNS) on growth and development of poinsettia 'Gutbier V-10 Amy'. To achieve this, WNS collected from rose grown in greenhouse was diluted with various times and 500 mL of each solution was applied every week. Then growth characteristics and nutrient uptake were determined at 180 days after transplanting. The treatment of undiluted WNS had highest plant height and length of branch among treatments tested, but there were no statistical differences in the number of bract and branches. Undiluted WNS had higher leaf number, leaf length, leaf width, fresh weight, and dry weight than any other treatments tested. There was also a trend that increased dilution times of WNS resulted in decreased plant growth. Undiluted WNS had higher chlorophyll content than Hyponex treatment, but diameter of crown did not show significant differences among treatments. In the analysis of root media collected at 6 months after fertilization, the treatment of undiluted WNS had higher electrical conductivity and organic matter content than other treatments, but the Hyponex treatment had higher phosphorus concentration than other treatments tested.

  • PDF

Light intensity inside plastic house influences the growth and nutrient uptake of daughter plants in nursery and early stages after transplanting in strawberry propagation

  • Gab Soon Park;Hyoung Je Yoo;Gil Hwan Bae;Seung Ho Jeong;In Sook Park;Jong Myung Choi
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.697-706
    • /
    • 2022
  • The effect of varied light intensities on the growth of daughter plants during propagation and after transplant to raised beds were examined in 'Sulhyang' strawberry. To this end, four treatments in controlling solar radiation inside a plastic house were made: 55% retractable shading and 35, 55, and 75% fixed shading. The plastic house was shaded only from 11:00 to 16:00 in June and 10:00 to 16:00 in July to September for the treatment of 55% retractable shading. The mean solar radiation inside the plastic house in the retractable 55% shading treatment was 317 W·m-2 and those in the 35, 55, and 75% fixed shading treatments were 183, 165, and 116 W·m-2, respectively, at 10 o'clock in the morning. The 55% and 75% fixed shading resulted in taller daughter plants with wider leaf areas than 55% retractable shading. The retractable shading also showed higher leaf numbers, crown diameters, root weights, and fresh weights compared to fixed shading treatments. Regarding the inorganic element contents, daughter plants grown under 75% fixed shading had 1.35% total nitrogen content followed by 1.19% in 35% fixed shading, 1.14% in 55% fixed shading, 1.14% in open culture, and 1.10% in 55% fixed shading. After 54 days following the transplant of daughter plants to a raised bed, the fresh weight of the aboveground part was the heaviest in the 55% retractable shading and non-shading treatments. The 75% fixed shading treatment had the lowest fresh weight of the aboveground plant parts. The results of this study could be used for the production of high-quality daughter strawberry plants.

Injury Symptom of Egg Plant Grown in a High pH Rockwool Amended with Ammonium Phosphate (인산암모늄 처리 고산도 암면에서 자란 가지생육장해증상)

  • Kim, Yoo-Hak;Lee, Hyeong-Yong;Kim, Myung-Sook;Kang, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.975-977
    • /
    • 2010
  • Ammonium nitrogen is volatilized as ammonia at high pH soil. This study was conducted to observe an injury cause of egg plant grown in a high pH rockwool amended with ammonium phosphate. The etiolation symptom (yellowing) was appeared on veins of a leaf but not in healthy root when nutrient solution containing ammonium phosphate in addition to essential elements was applied in a top soil of which pH was 7.8. However, the same symptom did not appeared in the egg plant from the top soil in which the nutrition solution containing potassium phosphate instead of ammonium phosphate was applied. pHs were similar between these two different solutions. This revealed that the injury was caused by ammonia gas.

Utilization of Essential Oil Free Needles for Compost and Roughage (침엽정유추출잔사의 퇴비화 및 조사료 이용)

  • 최인규;강하영
    • Journal of Korea Foresty Energy
    • /
    • v.21 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • The essential oil free needles, which were left after distillation of essential oil from various coniferous needles, were fermented with food waste organics in order to use as compost and roughage. Microorganisms for the fermentation were selected from domestic sources such as swine compost, bark compost, and kimchi, etc, and consisted of aerothermophilic bacteria and actinomycetes. The weight reduction ratio of food waste organics treated with the microorganisms was 90% after 30 days treatment, and the fermentation temperature was kept at approximately $45^{\circ}C$. The compost process was really slow due to chemical compounds derived from needles, and it finally took 60 days for complete compost. When 10% of needle compost was mixed with soil for radish growth, the growth indicators such as leaf length and root weight were increased compared with control, while root weight, root width, and root length were inhibited on the addition of 20% needle compost. The nutrient value and digestibility ratio of various essential oil free needles as roughage for ruminant animals were evaluated. The ratio of crude protein for essential oil free needles from Korean pine(Pinus koraiensis) was 10.02%, which was higher than those of rice straw(5.48%) and corn(9.00%). The digestibility ratios of essential oil free needles from Sawara cypress(Chamaecwaris pislfera), Korean pine(Pinus koraiensis), and Japanese Red Pine(Pinus densiflora) was 53%, 34%, 34%, respectively, indicating that those essential oil free needles were considered as excellent roughage.

  • PDF

The Effect of Soil Texture on Fruits and Growth Properties in Rabbiteye Blueberries

  • Kim, Hong-lim;Kwack, Yong-Bum;Lee, Mock-hee;Chae, Won-Byoung;Hur, Youn-Young;Kim, Jin-Gook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.582-587
    • /
    • 2015
  • This study was conducted to compare the plant growth and fruit quality of blueberries grown in different soil textures of Korea, in order to utilize the results for stable production and soil improvement. Rabbiteye blueberry cultivars 'Tifblue' and 'Baldwin' were planted and grown for three years from 2013 in wagner pot (1 $2000a^{-1}$) in a greenhouse of Namhae Sub-station, Institute of Horticultural and Herbal Science. The plants were grown in four soil textures, sand, sandy loam, loam and silt loam, and nutrient uptake and growth characteristics of plants were investigated. Leaf nitrogen and phosphorus contents of two cultivars grown in different soil textures ranged between 8.6 to $10.5gkg^{-1}$, which was lower than appropriate level for rabbiteye blueberry. However, the contents of potassium, calcium and magnesium in leaves were appropriate levels as $2.29{\sim}3.62gkg^{-1}$, $4.46{\sim}5.46gkg^{-1}$ and $1.45{\sim}2.12gkg^{-1}$, respectively. Nitrogen and phosphate contents in leaves were higher in the two cultivars grown in silt loam soil. There was no significant difference in plant volume and root dry weight among four soil textures in two cultivars. However, dry weight of leaves and branches were highest in loam soil. Fruit production was highest in loam and silt loam soil in two cultivars, showing negative correlation with the amount of sand in soil. However, sugar and acidity showed no correlation with sand content in soil. These results show the limit to the blueberry growth in soil that has no nutrient holding capacity; however, most of Korean soils that have good nutrient holding capacity can produce competitive fruits if the drainage is improved.