• 제목/요약/키워드: leading behavior

검색결과 714건 처리시간 0.035초

운전자 설문을 통한 자동차 운전자의 실수 확률 추정 (Estimation of Car Driver Error Probabilities Through Driver Questionnaire)

  • 이재인;임창주
    • 한국안전학회지
    • /
    • 제22권1호
    • /
    • pp.61-66
    • /
    • 2007
  • Car crashes are the leading cause of death for persons of every age. Specially, human-related factor has been known to be the primary causal factor of such crashes than vehicle-and environmental-related factors. There are various studies to analyze driver's behavior and characteristics in driving for reducing the car crashes in many areas of car engineering, psychology, human factor, etc. However, there are almost no studies which analyze mainly the human errors in driving and estimate their probabilities in terms of human reliability analysis. This study estimates the probability of human error in driving, i.e. driver error probability. First, fifty driver errors are investigated through DBQ (Driver Behavior Questionnaire) revision and the error likelihoods in driving are collected which are judged by skillful drivers using revised DBQ. Next, these likelihoods are converted into driver error probabilities using the results that verbal probabilistic expressions are changed into quantitative probabilities. Using these probabilities we can improve the warning effects on drivers by indicating their driving error likelihoods quantitatively. We can also expect the reduction effects of car accident through controlling especially dangerous error groups which have higher probabilities. Like these, the results of this study can be used as the primary materials of safety education on drivers.

LNG 저장탱크의 면진시스템 적용을 위한 내진설계 (Seismic design for application of LNG storage tank isolation system)

  • 서기영;박현재;양성영;김남식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.132-138
    • /
    • 2013
  • Natural gas as a clean fuel of the world demand for the trend is gradually increasing demand for clean energy in the country and there is growing interest. Therefore, LNG storage tanks and related facilities in the country of the importance of leading a community-based facility has emerged. So common sense that an earthquake with a seismic isolation device LNG storage tank similar to the actual behavior of the analytical model which can describe the development and construction of storage tanks to enhance the safety and economic design techniques need to be developed. In this study, a base isolation system, seismic analysis procedure of LNG storage tanks, and Triple-FPB developed a mathematical model of the present crystallized and complexity factors to the sum over histories model simplifies the complex behavior of the LNG storage tank with base isolation system how to interpret the seismic isolation is proposed.

  • PDF

테크노스트레스가 반생산적 과업행동에 미치는 영향 (The Effect of Technostress on Counterproductive Work Behavior)

  • 이재강;박태경
    • 한국IT서비스학회지
    • /
    • 제14권4호
    • /
    • pp.1-14
    • /
    • 2015
  • Due to advances in information and communication technologies (ICTs) and the advent of the Smartphone, people have access to the internet and can work at any time and any where. These are however likely to cause negative effects such as the personal information leakage and invasion of privacy. Caused by negative aspects of ICTs, the stress is so-called technostress. Recently, it is reported that managers tend to task order to their subordinates using an SNS or mobile messenger on a real-time basis after office hours or even on holiday, leading to a sharp increase in technostress. While previous studies of stress indicate that it is associated with the counter-productive work behavior (CWB), no empirical evidence has shown about the relationship between technostress and CWB. This study aims to explore the effect of technostress on CWB. In addition, it seeks to clarify the moderating effect of leader-member exchange(LMX) in this relationship. Drawing on literature regarding technostress and CWB, hypotheses are developed and tested with the sample of 101 using regression analyses. Results show that technostress has a significantly positive effect on CWB, but LMX has an insignificant moderating effect in the relationship between technostress and CWB. Implications and limitations with suggestions for future studies are presented.

Acceptance of Social Media as a Marketing Tool : A Quantitative Study

  • Hooda, Apeksha;Ankur, Ankur
    • Asian Journal of Business Environment
    • /
    • 제8권3호
    • /
    • pp.5-12
    • /
    • 2018
  • Purpose - The purpose of current paper is to identify features of advertisements at social media that generate the ad-click and to further identify if these advertisements lead to purchase. If no purchase is made, then reasons for not making purchase are identified. Users' purchase experience after users clicked at advertisements are also studied. Research design, data, and methodology - Research design followed is exploratory research, where various factors leading to ad-clicks and generating purchase at social media platform were explored. Raw data was gathered by means of survey among a sample of 185 respondents in India using online structured questionnaire. GLM model and multinomial regression were used to analyze the data. Results - Several factors including endorsement by friends, advertisement aesthetics, product reviews, and aggressive pricing played major role in generating ad-clicks. Major impediment to purchase on were product misrepresentation in advertisement, false discounts, and site security. Female users clicked more on social media advertisements and made more purchases compared to their male counterpart. Conclusions - Social media advertisements have significant positive effect on buying behavior of online customers. Transactions culminating from social media ad-click generated significant positive experience for social media users. Thus, social media can be effective marketing tool.

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis

  • Kuo, Wen-Ten;Shu, Chun-Ya
    • Computers and Concrete
    • /
    • 제16권2호
    • /
    • pp.261-274
    • /
    • 2015
  • This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.

Simulating and evaluating regolith propagation effects during drilling in low gravity environments

  • Suermann, Patrick C.;Patel, Hriday H.;Sauter, Luke D.
    • Advances in Computational Design
    • /
    • 제4권2호
    • /
    • pp.141-153
    • /
    • 2019
  • This research is comprised of virtually simulating behavior while experiencing low gravity effects in advance of real world testing in low gravity aboard Zero Gravity Corporation's (Zero-G) research aircraft (727-200F). The experiment simulated a drill rig penetrating a regolith simulant. Regolith is a layer of loose, heterogeneous superficial deposits covering solid rock on surfaces of the Earth' moon, asteroids and Mars. The behavior and propagation of space debris when drilled in low gravity was tested through simulations and visualization in a leading dynamic simulation software as well as discrete element modeling software and in preparation for comparing to real world results from flying the experiment aboard Zero-G. The study of outer space regolith could lead to deeper scientific knowledge of extra-terrestrial surfaces, which could lead us to breakthroughs with respect to space mining or in-situ resource utilization (ISRU). These studies aimed to test and evaluate the drilling process in low to zero gravity environments and to determine static stress analysis on the drill when tested in low gravity environments. These tests and simulations were conducted by a team from Texas A&M University's Department of Construction Science, the United States Air Force Academy's Department of Astronautical Engineering, and Crow Industries

기계적 합금화를 이용한 Al0.75V2.82CrZr 내화 고엔트로피 합금의 경량화 및 고온 열안정성 연구 (Thermal Stability and Weight Reduction of Al0.75V2.82CrZr Refractory High Entropy Alloy Prepared Via Mechanical Alloying)

  • 김민수;이한성;안병민
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.478-483
    • /
    • 2023
  • High-entropy alloys (HEAs) are characterized by having five or more main elements and forming simple solids without forming intermetallic compounds, owing to the high entropy effect. HEAs with these characteristics are being researched as structural materials for extreme environments. Conventional refractory alloys have excellent high-temperature strength and stability; however, problems occur when they are used extensively in a high-temperature environment, leading to reduced fatigue properties due to oxidation or a limited service life. In contrast, refractory entropy alloys, which provide refractory properties to entropy alloys, can address these issues and improve the high-temperature stability of the alloy through phase control when designed based on existing refractory alloy elements. Refractory high-entropy alloys require sufficient milling time while in the process of mechanical alloying because of the brittleness of the added elements. Consequently, the high-energy milling process must be optimized because of the possibility of contamination of the alloyed powder during prolonged milling. In this study, we investigated the high-temperature oxidation behavior of refractory high-entropy alloys while optimizing the milling time.

Finite element modeling of reinforced concrete beams externally bonded with PET-FRP laminates

  • Rami A. Hawileh;Maha A. Assad;Jamal A. Abdalla; M. Z. Naser
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.163-173
    • /
    • 2024
  • Fiber-reinforced polymers (FRP) have a proven strength enhancement capability when installed into Reinforced Concrete (RC) beams. The brittle failure of traditional FRP strengthening systems has attracted researchers to develop novel materials with improved strength and ductility properties. One such material is that known as polyethylene terephthalate (PET). This study presents a numerical investigation of the flexural behavior of reinforced concrete beams externally strengthened with PET-FRP systems. This material is distinguished by its large rupture strain, leading to an improvement in the ductility of the strengthened structural members compared to conventional FRPs. A three-dimensional (3-D) finite element (FE) model is developed in this study to predict the load-deflection response of a series of experimentally tested beams published in the literature. The numerical model incorporates constitutive material laws and bond-slip behavior between concrete and the strengthening system. Moreover, the validated model was applied in a parametric study to inspect the effect of concrete compressive strength, PET-FRP sheet length, and reinforcing steel bar diameter on the overall performance of concrete beams externally strengthened with PET-FRP.

Behavior of structures repaired by hybrid composite patches during the aging of the adhesive

  • Habib Achache;Rachid Zahi;Djaafar Ait Kaci;Ali Benouis
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.135-147
    • /
    • 2024
  • The objective of this study is to analyze, using the finite element method, the durability of damaged and repaired structures under the effect of mechanical loading coupled with environmental conditions (water absorption and/or temperature). The study is based on the hybrid patch repair technique, considering several parameters based on the J integral to observe the behavior of the adhesive in transferring load from a damaged plate to the repair patch. The results clearly show that water absorption and increased temperature cause degradation of the mechanical properties of the adhesive, leading to an increase in its plasticization, which is beneficial for the assembly's strength. However, the degradation of the adhesive's properties due to aging in the repair results in poor load transfer from the damaged area to the patch. The findings of this study allowed the authors to conclude that the [0°]8 sequence consistently offers the best performance, with the lowest J integral values and superior crack resistance. The lowest the J integral for the [0°]8 stacking sequence is typically 3-7% lower than that of the [0/-45/45/90]S and [0/-45/90/45]S sequences at elevated temperatures. At 60℃, the J integral increases by approximately 3-6% compared to 40℃ and 20, depending on the aging duration and stacking sequences.

Finite element analysis of the behavior of elliptical cracks emanating from the orthopedic cement interface in total hip prostheses

  • Ali Benouis;Mohammed El Sallah Zagane;Abdelmadjid Moulgada;Murat Yaylaci;Djafar Ait Kaci;Merve Terzi;Mehmet Emin Ozdemir;Ecren Uzun Yaylaci
    • Structural Engineering and Mechanics
    • /
    • 제89권5호
    • /
    • pp.539-547
    • /
    • 2024
  • This study examines crack behavior within orthopedic cement utilized in total hip replacements through the finite element method. Its main goal is to compute stress intensity factors (SIF) near the crack tip. The analysis encompasses two load types, static and dynamic, applied to a crack starting from the interface between the cement and bone. Specifically, it investigates SIFs under mixed mode conditions during three activities: normal walking, climbing upstairs, and downstairs. The results highlight that a crack originating from a micro-interface under substantial loading can cause cement damage, leading to prosthetic loosening. Stress intensity factors in modes I, II, and III are influenced by the crack tip's orientation and location in the bone cement, with a 90° orientation yielding notably higher values across all three modes.