DOI QR코드

DOI QR Code

Finite element analysis of the behavior of elliptical cracks emanating from the orthopedic cement interface in total hip prostheses

  • Ali Benouis (University of Saida) ;
  • Mohammed El Sallah Zagane (LMPM, Djillali Liabes University of Sidi Bel-Abbes) ;
  • Abdelmadjid Moulgada (LMPM, Djillali Liabes University of Sidi Bel-Abbes) ;
  • Murat Yaylaci (Biomedical Engineering MSc Program, Recep Tayyip Erdogan University) ;
  • Djafar Ait Kaci (LMPM, Djillali Liabes University of Sidi Bel-Abbes) ;
  • Merve Terzi (Department of Civil Engineering, Istanbul Rumeli University) ;
  • Mehmet Emin Ozdemir (Department of Civil Engineering, Cankiri Karatekin University) ;
  • Ecren Uzun Yaylaci (Faculty of Engineering and Architecture, Recep Tayyip Erdogan University)
  • Received : 2023.06.16
  • Accepted : 2024.02.22
  • Published : 2024.03.10

Abstract

This study examines crack behavior within orthopedic cement utilized in total hip replacements through the finite element method. Its main goal is to compute stress intensity factors (SIF) near the crack tip. The analysis encompasses two load types, static and dynamic, applied to a crack starting from the interface between the cement and bone. Specifically, it investigates SIFs under mixed mode conditions during three activities: normal walking, climbing upstairs, and downstairs. The results highlight that a crack originating from a micro-interface under substantial loading can cause cement damage, leading to prosthetic loosening. Stress intensity factors in modes I, II, and III are influenced by the crack tip's orientation and location in the bone cement, with a 90° orientation yielding notably higher values across all three modes.

Keywords

References

  1. ABAQUS/Standard Version 6.17 (2017), Analysis User's Manual, Dassault Systemes Simulia Corporation, Providence, RI, Hibbitt, Karlsson, Sorensen. Abaqus 6.11 Manual.
  2. Abdel-Wahab, A.A. and Silberschmidt, V.V. (2011), "Numerical modeling of impact fracture of cortical bone tissue using x-fem", J. Theor. Appl. Mech., 49(3), 599-619.
  3. Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019), ''Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions'', Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
  4. Bakora, A. and Tounsi, A. (2015), ''Thermo-mechanical post-buckling behavior of thick functionally graded plates resting on elastic foundations'', Struct. Eng. Mech., 56(1), 85-106. https://doi.org/10.12989/sem.2015.56.1.085.
  5. Bashiri, A., Sallam, H.E.M. and Abd-Elhady, A.A. (2020), "Progressive failure analysis of a hip joint based on extended finite element method", Eng. Fail. Anal., 117, 104829. https://doi.org/10.1016/j.engfailanal.2020.104829.
  6. Benbarek, S., Bachir Bouiadjra, B., Bouziane, M.M., Achour, T. and Serier, B. (2013a), ''Numerical analysis of the crack growth path in the cement mantle of the reconstructed acetabulum'', Mater. Sci. Eng. C, 33(1), 543-549. https://doi.org/10.1016/j.msec.2012.09.029.
  7. Benbarek, S., Bouiadjra, B., Achour, T., Belhouari, M. and Serier, B. (2007), ''Finite element analysis of the behaviour of crack emanating from microvoid in cement of reconstructed acetabulum'', Mater. Sci. Eng. A, 457(1-2), 385-391. https://doi.org/10.1016/j.msea.2006.12.087.
  8. Benbarek, S., Sahli, A., Bouziane, M.M., Bachir Bouiadjra, B. and Serier, B. (2013b), ''Crack length estimation from the damage modelisation around a cavityi in the orthopedic cement of the total hip prosthesis", Key Eng. Mater., 577, 577-578. https://doi.org/10.4028/www.scientific.net/KEM.577-578.345.
  9. Benouis, A., Boulenouar, A., Benseddiq, N. and Serier, B. (2015), ''Numerical analysis of crack propagation in cement PMMA: Application of SED approach'', Struct. Eng. Mech., 55(1), 93-109. https://doi.org/10.12989/sem.2015.55.1.093.
  10. Bergmann, G., Deuretzbachir, G., Heller, M., Graichen, F., Rohlmann, A., Strauss, J. and Duda, G.N. (2001), ''Hip contact forces and gait patterns from routine activities'', J. Biomech., 34, 859-871. https://doi.org/10.1016/S0021-9290(01)00040-9.
  11. Bola, Ana M., Ramos, A. and Simoes, J.A. (2016), "Sensitivity analysis for finite element modeling of humeral bone and cartilage", Biomater. Biomech. Bioeng., 3(2), 71-84. https://doi.org/10.12989/bme.2016.3.2.071.
  12. Bouziane, M.M., Bachir Bouiadjra, B., Benseddiq, N., Tabeti, E.M.H., Serier, B. and Benbarek, S. (2013), ''The effects of cracks emanating from micro-void and bone inclusion in cemented total hip replacement", Adv. Bio-Mech. Syst. Mater., 40, 41-57. https://doi.org/10.1007/978-3-319-00479-2_4.
  13. Bouziane, M.M., Bouiadjra Bachir, B., Benbarek, S., Tabeti, M.S.H. and Achour, T. (2009), ''Finite element analysis of the behaviour of microvoids in the cement mantle of cemented hip stem: static and dynamic analysis'', Mater. Des., 31(1), 545-550. https://doi.org/10.1016/j.matdes.2009.07.016.
  14. Cao, Z. and Liu, Y. (2012), "A new numerical modelling for evaluating the stress intensity factors in 3-D fracture analysis", Struct. Eng. Mech., 43(3), 321-336. https://doi.org/10.12989/sem.2012.43.3.321.
  15. Duda, G.N., Heller, M., Albinger, J., Schulz, O., Schneider, E. and Claes, L. (1998). ''Influence of muscle forces on femoral strain distribution'', J. Biomech., 31(9), 841-846. https://doi.org/10.1016/S0021-9290(98)00080-3.
  16. Framawy, A.M., Abd-Elhady, A.A., Ahmad, S.S. and Sallam, H.E.D.M. (2024), "Failure assessment of hip stem due to pelvic positioning and femoral stem loosening", Fatig. Fract. Eng. Mater. Struct., 47(2), 298-318. https://doi.org/10.1111/ffe.14185.
  17. Guvercin, Y., Abdioglu, A.A., Dizdar, A., Uzun Yaylaci, E. and Yaylaci, M. (2022a), ''Suture button fixation method used in the treatment of syndesmosis injury: A biomechanical analysis of the effect of the placement of the button on the distal tibiofibular joint in the mid-stance phase with finite elements method'', Injury, 53(7), 2437-2445. https://doi.org/10.1016/j.injury.2022.05.037.
  18. Guvercin, Y., Yaylaci, M., Dizdar, A., Kanat, A., Uzun Yaylaci, E., Ay, S., Abdioglu, A.A. and Sen, A. (2022b), ''Biomechanical analysis of odontoid and transverse atlantal ligament in humans with ponticulusposticus variation under different loading conditions: finite element study'', Injury, 53, 3879-3886. https://doi.org/10.1016/j.injury.2022.10.003.
  19. Guvercin, Y., Yaylaci, M., Olmez, H., Uzun Yaylaci, E., Ozdemir, M.E. and Dizdar, A. (2022c), ''Finite element analysis of "the mechanical behavior of the different angle hip femoral stem'', Biomater. Biomech. Bioeng., 6(1), 29-46. https://doi.org/10.12989/bme.2022.6.1.029.
  20. Hidayat, T., Ismail, R., Tauviqirrahman, M., Saputra, E., Ammarullah, M.I., Lamura, M.D. Bayuseno, A. and Jamari, J. (2023), "Investigation of mesh model for a finite element simulation of the dual-mobility prosthetic hip joint", J. Tribologi, 38, 118-140.
  21. Jasty, M., Maloney, W.J., Bragdon, C.R., Oconnor, D.O., Haire, T. and Harris, W.H. (1991), ''The initiation of failure in cemented femoral components of hip arthroplasties'', J. Bone Joint Surgery Brit. Vol., 73(4), 551-558. https://doi.org/10.1302/0301-620X.73B4.2071634.
  22. Karimi, S., Haji Aboutalebi, F. and Heidari-Rarani, M. (2023), ''A numerical study on fatigue design of Ti-6Al-4V total hip stem: infinite-life and damage tolerance approaches using XFEMPNVCCT", Meccanica, 58(5), 959-980. https://doi.org/10.1007/s11012-023-01661-6.
  23. Khadimallah, M.A., Hussain, M., Yahya, A., Khedher, K.M., Al-Thobiani, F., Tahir, S.A. and Tounsi, A. (2021), ''Structural performance of submerged ring support FG shell using numerical analysis'', Struct. Eng. Mech., 80(3), 253-264. https://doi.org/10.12989/sem.2021.80.3.253.
  24. Lee, H., Park, S., Noh, K., Ahn, S., Shin, S. and Noh, G. (2020), "Biomechanical stability of internal bone-level implant: Dependency on hex or non-hex structure", Struct. Eng. Mech., 74(4), 567-576. https://doi.org/10.12989/sem.2020.74.4.567.
  25. Lennon, A.B., McCormack, B.A.O. and Prendergast, P.J. (2004), ''The relationship between cement fatigue damage and implant surface finish in proximal femoral prostheses'', Med. Eng. Phys., 25(10), 833-841. https://doi.org/10.1016/S1350-4533(03)00120-6.
  26. Markou, G. and Bakas, N.P. (2021), "Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis", Comput. Concrete, 28(6), 533-547. https://doi.org/10.12989/cac.2021.28.6.533.
  27. Michael, D.R., Ernest, Y., Laila, A., Al-Marashi, L., Goldstein, P., Hetherington, A., Petrie, T. and Pruitt, L. (2006), ''In vivo behavior of acrylic bone cement in total hip arthroplasty'', Biomater, 27(2), 256-261. https://doi.org/10.1016/j.biomaterials.2005.05.103.
  28. Mohamed, C., Abderahmane, S. and Benbarek, S. (2018), "Fracture behavior modeling of a 3D crack emanated from bony inclusion in the cement PMMA of total hip replacement", Struct. Eng. Mech., 66(1), 37-43. https://doi.org/10.12989/sem.2018.66.1.037.
  29. Morgan, R.L., Farrar, D.F., Rose, J. and Forster, H. (2003), ''Creep behavior of bone cement: a method for time extrapolation using time-temperature equivalence", J. Mater. Sci. Mater. Med., 14, 321-325. https://doi.org/10.1023/A:1022927814801.
  30. Moulgada, A., Bouziane, M.M., Bouiadjra, B.B., Benbarek, S., Albedah, A. and Achour, T. (2014), ''Finite element simulation of stress distribution in the different components of Ceraver-Osteal hip prosthesis: static and dynamic analysis'', Mechanika, 20(5), 452-459. https://doi.org/10.5755/j01.mech.20.5.5372.
  31. Moulgada, A., Zagane, M.E., Benouis, A., Sahli, A., Cherfi, M. and Benbarek, S. (2018), ''Modelling of the femoral fracture under dynamic loading'', J. Serb. Soc. Comput. Mech., 12(1), 96-107. https://doi.org/10.24874/jsscm.2018.12.01.07.
  32. Moulgada, A., Zagane, M.E., Yaylaci, M., Djafar, A.K., Abderahmen, S., Ozturk, S. and Uzun Yaylaci E, (2023), ''Comparative study by the finite element method of three activities of a wearer of total hip prosthesis during the postoperative period'', Struct. Eng. Mech., 87(6), 575-583. https://doi.org/ 10.12989/sem.2023.87.6.575
  33. Oshkour, A.A, Talebi, H., Shirazi, S.F.S., Yau, Y.H., Tarlochan, F. and Osman, N.A.A. (2015), "Effect of geometrical parameters on the performance of longitudinal functionally graded femoral prostheses", Artif. Organ., 39(2), 156-164. https://doi.org/10.1111/aor.12315.
  34. Ouinas, D., Flliti, A., Sahnoun, M., Benbarek, S. and Taghezout, N. (2012), ''Fracture behavior of the cement mantle of reconstructed acetabulum in the presence of a microcrack emanating from a microvoid", Int. J. Mater. Eng., 2(6), 90-104. https://doi.org/10.5923/j.ijme.20120206.04.
  35. Ramos, A., Relvas, C., Completo, A. and Simoes, J.A. (2013a), "The formation of cracks at cement interfaces of different femoral stem designs", Eur. Orthop. Traumatol., 4, 205-215. https://doi.org/10.1007/s12570-013-0190-6.
  36. Ramos, A., Relvas, C., Completo, A. and Simoes, J.A. (2013b), "Prediction of cement damage for the Stanmore and Charnley femoral stems", Int. J. Damage Mech., 22(5), 719-736. https://doi.org/10.1177/1056789512462.
  37. Rodriguez, L.C., Chari, J., Gindri, I.M., Aghyarian, S., Kosmopoulos, V. and Rodrigues, D.C. (2014), ''Preparation and characterization of injectable brushite filled-poly (methyl methacrylate) bone cement'', Mater., 7(9), 6779-6795. https://doi.org/10.3390/ma7096779.
  38. Serier, B., Bouiadjra B.B., Benbarek, S. and Achour, T. (2009), ''Analysis of the effect of the forces during gait on the fracture behaviour in cement of reconstructed acetabulum'', Comput. Mater. Sci., 46, 267-274. https://doi.org/10.1016/j.commatsci.2009.03.003.
  39. Shemirani, A.B., Haeri, H., Sarfarazi, V., Akbarpour, A. and Babanouri, N. (2018), "The discrete element method simulation and experimental study of determining the mode I stress-intensity factor", Struct. Eng. Mech., 66(3), 379-386. https://doi.org/10.12989/sem.2018.66.3.379.
  40. Shih, C.F. and Asaro, R.J. (1988), ''Elastic-plastic analysis of cracks on bimaterial interfaces: Part I-Small scale yielding", J. Appl. Mech., 55(2), 299-316. https://doi.org/10.1115/1.3173676.
  41. Topoleski, L.D., Ducheyne, P. and Cuckler, J.M. (1990), ''A fractographic analysis of in vivo poly-methyl-methacrylate bone cement failure mechanisms'', J. Biomed. Mater. Res., 24(2), 135-154. https://doi.org/10.1002/jbm.820240202.
  42. Vicini, A. and Goswami, T. (2016), "Sensitivity analysis of skull fracture", Biomater. Biomech. Bioeng., 3(1), 47-57. https://doi.org/10.12989/bme.2016.3.1.047.
  43. Waanders, D., Mann, K.A., Janssen D. and Verdonschot, N. (2012), ''The behavior of the micro-mechanical cement-bone interface affects the cement failure in total hip replacement'', J. Biomech., 44(2), 228-234. https://doi.org/10.1016/j.jbiomech.2010.10.020.
  44. Wang, Y. and Sun, S. (2022), "Application of multi-physics simulation for vibration performance of the hand after contacting the ball with the volleyball player", Struct. Eng. Mech., 83(5), 681-692. https://doi.org/10.12989/sem.2022.83.5.681.
  45. Yaylaci, M. (2016), ''The investigation crack problem through numerical analysis'', Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org 10.12989/sem.2016.57.6.1143.
  46. Yaylaci, M. (2022), ''Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method'', Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
  47. Yaylaci, M., Sengul Sabano, B., Ozdemir, M.E. and Birinci, A. (2022), ''Solving the contact problem of functionally graded layers resting on a homogeneous half-plane and pressed with a uniformly distributed load by analytical and numerical methods'', Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  48. Yaylaci, M., Yayli, M., Uzun Yaylaci, E., Olmez, H. and Birinci, A. (2021), ''Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron'', Struct. Eng. Mech., 78, 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  49. Zagane, M.E., Ali, B. and Abderahmen, S. (2020a), ''Effect of force during stumbling of the femur fracture with a different cemented total hip prosthesis'', Biomater. Biomed. Eng., 5(1), 11-23. https://doi.org/10.12989/bme.2020.5.1.011.
  50. Zagane, M.E., Benouis, A., Moulgada, A., Djebbar, N. and Sahli, A. (2020b), ''Biomechanical behaviour of the total hip prosthesis subjected to normal gait cycle load: identification of the damage in the cement mantle'', J. Serb. Soc. Comput. Mech., 14(2), 14-30. https://doi.org/10.24874/jsscm.2020.14.02.02.
  51. Zagane, M.E., Moulgada, A., Yaylaci, M., Sahli Abderahmen, Ozdemir, M.E. and Uzun Yaylaci, E. (2023a), ''Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)'', Struct. Eng. Mech., 86(5), 635-645. https://doi.org/10.12989/sem.2023.86.5.635.
  52. Zagane, M.E., Smail, B., Abderahmane, S., Bouiadjra, B.B. and Boualem, S. (2016), ''Numerical simulation of the femur fracture under static loading'', Struct. Eng. Mech, 60(3), 405-412. https://doi.org/10.12989/sem.2016.60.3.405.
  53. Zagane., M.E., Abdelmadjid, M., Yaylaci, M., Abderahmen, S. and Uzun Yaylaci, E. (2023b), ''Finite element analysis of the femur fracture for a different total hip prosthesis (Charnley, Osteal, and Thompson)'', Struct. Eng. Mech., 88(6), 583-588. https://doi.org/10.12989/sem.2023.88.6.583.
  54. Zengah, S., Mankour, A., Abderahmane, S., Salah, H., Mallek, A. and Bouziane, M.M. (2022), "Numerical analysis of the crack growth path in the cement of hip spacers", Frattura ed Integrita Strutturale, 16(61), 266-281. https://doi.org/10.3221/IGF-ESIS.61.18.
  55. Zhang, X., Zhang, S., Yang, J., Chen, X. and Zhou, G. (2022), "Experimental and finite element analyses of eccentric compression of basalt-fiber reinforced recycled aggregate concrete-filled circular steel tubular stub column", Steel. Compos. Struct., 42(5), 617-631. https://doi.org/10.12989/scs.2022.42.5.617.