• Title/Summary/Keyword: leading Edge

Search Result 663, Processing Time 0.023 seconds

Improvement of the flow around airfoil/flat-plate junctures by optimization of the leading-edge fence (날개-평판 접합부에서의 날개 앞전 판 최적화를 통한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.829-836
    • /
    • 2009
  • 3-Dimensional flow which is represented by horseshoe vortex is generated as a type of secondary flow about the main flow. As well, it causes the flow loss. The present study deals with the leading edge fence shape on a wing-body junction to decrease a horseshoe vortex, one of the main factors to generate the secondary flow losses. The shape of leading-edge fence was optimized with the design variables of the installed height, length, width, and thickness of the fence as the design variables. Approximate optimization design method is used as the optimization. The study was investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. Total pressure coefficient of the optimized design case was decreased about 7.5 % compare to the baseline case.

Rotor Leading Edge Thickness Effect on Supersonic Impulse Turbine Performance (초음속 충동형 터빈의 로터 앞전 두께가 성능 변화에 미치는 영향)

  • Lee, Hang-Gi;Jung, Eun-Hwan;Park, Pyun-Gu;Kim, Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.41-47
    • /
    • 2011
  • Turbopump, which is a part of 75 ton open cycle liquid rocket engine has a super sonic impulse turbine. This paper investigated the leading edge thickness effect on the turbine performance experimently. Two rotors were tested with the different leading edge thickness. The ratios (rotor thickness to Pitch) are 1.9 and 1.4 times to 30 ton turbine rotor. As a result, a rotor with 1.4 times ratio had a 1.5% higher efficiency gain than a rotor with 1.9 times ratio. The pressure ratio with the maximum efficiency on the same rotational speed was increased to the full expansion ratio of nozzle.

A Study on the Leading Edge Modulation Buck converter Operating in Discontinuous Conduction Mode (전류 불연속 모드로 동작하는 벅 컨버터의 새로운 PWM 제어 방식에 관한 연구)

  • Lee, Jae-Sam;Son, Ho-In;Cho, Hoon-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.241-247
    • /
    • 2007
  • This paper presents a new Leading edge modulation Buck converter operating in discontinuous conduction mode (DCM) for the pulse voltage input. In the slave output of the LLC half-bridge multi-resonant converter, to regulate the direct chopper's output voltage, its PWM switch is controlled by the leading edge modulation. The principles of this proposed LEM control method and the fast dynamics in inductor current based on the converter impulse response are studied. The theoretical results are verified through an experimental prototype of the 100W 60inch PDP Address power module.

An Experimental Study on Selecting the Diameter of Probe Stylus of a Coordinate Measuring Machine in Measuring the Edge Profile of High Pressure Compressor (압축기 블레이드의 Edge 형상 측정시 3차원 측정기의 탐침 볼 직경 선정을 위한 실험적 연구)

  • Joung, Soo-Ho;Byun, Jai-Hyun
    • IE interfaces
    • /
    • v.15 no.4
    • /
    • pp.432-438
    • /
    • 2002
  • When the trailing edge and leading edge of an airfoil contour of high pressure compressor blades are measured, there exists a measurement error due to the size of the probe stylus ball diameter. In the paper an experimental study is provided to determine the optimum diameter of the probe stylus in inspecting the airfoil of the high pressure compressor blade. The measurement and analysis procedure suggested in this paper will be helpful to those who are involved in measuring and inspecting various types of blades.

Computational Fluid Dynamics of the aerodynamic characteristics for Flying Wing configuration with Flaperon (플래퍼론이 전개된 플라잉윙 형상의 공력 특성에 대한 전산유동해석)

  • Ko, Arim;Chang, Kyoungsik;Park, Changhwan;Sheen, Dongjin
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.32-38
    • /
    • 2019
  • The flying wing configuration with high sweep angles and rounded leading edge represent a complex flow of structures by the leading edge vortex. For control of the tailless flying wing configuration with unstable directional stability, flaperon is used. In this study, we conducted numerical simulations for a non-slender flying wing configuration with a rounded leading edge and analyzed the effect of the sideslip angle and flaperon. Through aerodynamic coefficient analysis, it was found that the effect of AoS on lift and drag coefficient was minimal and the side force and moment coefficient were markedly influenced by AoS. As the sideslip angle increased, the pitch break, which is related to the pitching moment coefficient, was delayed. Through stability analysis, the directional and lateral static stability of the flying wing configuration were increased by flaperon. Also, the structure and behavior of the leading edge vortex were analyzed by observing the contour of the pressure coefficient and the skin friction line.

FLOW CONTROL OF SMART UAV AIRFOIL USING SYNTHETIC JET (Synthetic jet을 이용한 스마트 무인기 익형 주위의 유동 제어)

  • Kim, Min-Hee;Kim, Sang-Hoon;Kim, Woo-Re;Kim, Chong-Am;Kim, Yu-Shin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.43-50
    • /
    • 2009
  • In order to reduce the download around Smart UAV(SUAV) at hovering and transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including wing leading and trailing edge separation, and the large region of separated flow beneath the wing. First, in order to control the trailing edge separation, synthetic jet is located at 30, 95% of flap chord length. The flow control using synthetic jet on flap shows that stall characteristics depending on several mode can be improved through separation vortices resizing. Also, a flap jet and a 0.01c jet which control the separation efficiently are applied at the same time at each test case because controlling the leading edge separation is essential for download reduction. As a result, time averaged download is reduced about 18% comparing with no control case at hovering mode and 48% at transition mode. These research results show that if flow control using leading edge jet and trailing edge jet is used effectively to the SUAV in overall flight mode, flight performance and stability can be improved.

  • PDF

Effects of the Damaged Axial-flow Compressor Blade on the Gas Turbine Components (축류 압축기 블레이드 손상시 터빈부품에 미치는 영향)

  • Kang, M.S.;Yun, W.N.;Kim, K.Y.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.53-58
    • /
    • 2007
  • The ruptured blade which is rotating at high speed can damage severely the all stage compressor blades and the turbine components. If the shattered blades flow downstream inside the turbine parts, then the turbine blades and vanes can be damaged. The small parts of shattered blades which are flowed into the turbine parts pass through without any damages in the leading edge of the first stage stationary blades. Then they bump against the convex side of the leading edge of the first stage moving blades and the trailing edge of the first stage stationary blades repeatedly. The debris of shattered blades may plug the cooling holes in the turbine blades and vanes. The dent damage and the coating delamination could be also occurred by the debris of shattered blades flowed downstream inside the combustion liner and the transition piece. This paper analyzes the influence on the turbine components and the damage mechanism and characteristics in case of the damaged blade of the multiple-stage axial flow compressor.

  • PDF

Control of Sound Pressure inside a Flow Excited Cavity by Regulation of Vorticity Shedding (와류진동 조절에 의한 유동가진 공동 내부의 음압 제어)

  • Park, Jong-Beom;Hwang, Cheol-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1223-1229
    • /
    • 2007
  • Flow traveling over a cavity opening forms a vortex due to unstable shear layer and induces an aerodynamic pressure excitation from the diffusion of the vortex convecting out of the trailing edge of the opening. The interaction between the excitation force and the cavity response sustains resonance in the resonator(cavity) and locked-in vortex shedding at the leading edge of the opening. The aerodynamic excitation force can be described from the diffusion of the vortex over the trailing edge and the level of its diffusivity is related to the strength of vorticity seeded at the leading edge. In this study, the control scheme of the internal pressure oscillation was proposed from regulating the vorticity at the leading edge by use of an oscillating spoiler. It was found that the relative motion between the spoiler and the air mass at the cavity opening influenced vorticity strength and the control was achieved by direct feedback of the cavity pressure fluctuation to the actuator.

The Vortical Flow Field of Delta Wing with Leading Edge Extension

  • Lee, Ki-Young;Sohn, Myong-Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.914-924
    • /
    • 2003
  • The interaction and breakdown of vortices over the Leading Edge Extension (LEX) - Delta wing configuration has been investigated through wing-surface pressure measurements, the off-surface flow visualization, and 5-hole probe measurements of the wing wake section. The description focused on analyzing the interaction and the breakdown of vortices depending on the angle of attack and the sideslip angle. The Effect of angle of attack and sideslip angle on the aerodynamic load characteristics of the model is also presented. The sideslip angle was found to be a very influential parameter of the vortex flow over the LEX-delta wing configuration. The introduction of LEX vortex stabilized the vortex flow, and delayed the vortex breakdown up to a higher angle of attack. The vortex interaction and breakdown was promoted on the windward side, whereas it was suppressed on the leeward side.

Influence of the Leading Edge Shape of a 2-Dimensional hydrofoil on Cavitation Characteristics (2차원 날개단면의 앞날 형상 변화에 따른 캐비테이션 특성 연구)

  • I.H. Song;J.W. Ahn;I.S. Moon;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.60-66
    • /
    • 2000
  • In order to improve cavitation characteristics for a high-speed propeller, leading edge shape of a 2-D hydrofoil is investigated numerically and experimentally. For flowfield analysis around the leading edge, the incompressible Reynolds Averaged Navier-Stokes(RANS) equation is solved using the standard $k-\varepsilon$ turbulence model and a finite volume method(FVM). The cavitation thickness, which is occurred on hydrofoil surface, is predicted using the panel code. It is shown that the calculation codes predict the experimental trend fairly well. From these results, new hydrofoils are designed

  • PDF