• 제목/요약/키워드: leading Edge

검색결과 663건 처리시간 0.021초

Effect of the Blade Leading Edge on the Performance of a Centrifugal Compressor

  • Chu, Leizhe;Du, Jianyi;Zhao, Xiaolu;Xu, Jianzhong
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.168-172
    • /
    • 2008
  • Three different geometry shapes of the blade leading edge in a centrifugal compressor were investigated in this paper. Numerical simulation was done to analyze the effect of the leading edge shape on the performance of the centrifugal compressor. The result shows that compared to the blunt leading edge, the circular leading edge will raise the chocking mass flow. The pressure ratio and efficiency will increase obviously. Using elliptical leading edge will get a further improvement on the performance than circular leading edge. The analysis of the flow field shows that the leading edge often causes flow separation near the inlet; using circular leading edge and elliptical leading edge will reduce the separation. What's more, using circular and elliptical leading edge will also reduce the wake loss near the outlet of the impeller. In a centrifugal compressor, using circular or elliptical leading edge on the splitter will improve the pressure loading distribution of main blade near the position of the splitter leading, which will increase the pressure ratio.

  • PDF

Control of Delta-Wing Vortex by Micro-Fin-Type Leading-Edge Flap

  • Sohn, Myong-Hwan;Chung, Hyoung-Seog;Cho, Dong-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권2호
    • /
    • pp.128-136
    • /
    • 2006
  • The present study examined the effects of micro leading-edge flaps on the vortex characteristic changes of a double-delta wing through pressure measurements of the wing upper surface and PIV measurements of the wing-leeward flow region. The experimental data were collected and analyzed while changing the deflection angle of the leading-edge flaps to investigate the feasibility of using micro leading-edge flaps as flow control devices. The test results revealed that the leading edge modification could greatly alter the vortex flow pattern and the wing surface pressure of the delta wing, which suggested that the leading-edge flaps could be used as an effective device for the control of delta-wing vortex flow.

앞전 형상에 따른 삼각 날개의 공력 특성 (Aerodynamic Characteristics of Delta Wing According to Leading Edge Geometries)

  • 진학수;김성초;김정수;최종욱
    • 한국가시화정보학회지
    • /
    • 제5권2호
    • /
    • pp.56-63
    • /
    • 2007
  • Flow visualization and aerodynamic characteristics of delta wings with two different leading edge geometries are investigated by PIV system and wind tunnel balance when the Reynolds number is about based on the freestream velocity and the root chord length. Delta wing models have 65-deg swept angle, and the leading edge shapes are divided into round- and sharp- type. The experimental results indicated that the leading-edge vortex strength and aerodynamic coefficient in the round leading edge are stronger and more, respectively than those in the sharp one. Therefore the flow interactions between vortices and the boundary layer are more desirable or more rapidly swirled in the round-type leading edge.

고받음각의 NACA23012익형에서 synthetic jet을 이용한 박리 제어 연구 (SEPARATION CONTROL USING SYNTHETIC JET ON NACA23012 AT HIGH ANGLE OF ATTACK)

  • 김상훈;김종임;김규홍
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.125-129
    • /
    • 2005
  • Flow control has been performed using synthetic jet on NACA23012. In order to improve aerodynamic performance, synthetic jet is located near separation paint on airfoil with leading edge droop and plain flap. The flow control using synthetic jet shows that stall characteristics and control surface performance can be improved through resizing separation vortices. Stall is delayed and stall characteristics are improved when synthetic jet is applied from separation region of leading edge droop. Control surface effectiveness is increased and lift is increased when synthetic jet applied at the flap leading edge region. The results show that aerodynamic characteristics can be improved through leading edge droop with synthetic jet at near separation and plain flap with synthetic jet at the flap leading edge. The combination of synthetic jet and simple high lift device is as good as fowler flap system.

  • PDF

초음속 회전익의 앞전 형상이 공력 성능에 미치는 효과에 대한 수치적 연구 (Numerical Study on The Effects of Blade Leading Edge Shape to the Performance of Supersonic Rotors)

  • 박기철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.149-155
    • /
    • 2001
  • Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.

  • PDF

Numerical Evaluation of Flow and Performance of Turbo Pump Inducers

  • Shim, Chang-Yeul;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제18권3호
    • /
    • pp.481-490
    • /
    • 2004
  • Steady state flow calculations are executed for turbo-pump inducers of modern design to validate the performance of Tascflow code. Hydrodynamic performance of inducers is evaluated and structure of the passage flow and leading edge recirculation are also investigated. Calculated results show good coincidence with experimental data of static pressure performance and velocity profiles over the leading edge. Upstream recirculation, tip leakage and vortex flow at the blade tip and near leading edge are main sources of pressure loss. Amount of pressure loss from the upstream to the leading edge corresponds to that of whole pressure loss through the blade passage. The viscous loss is considerably large due to the strong secondary flow. There appears more stronger leading edge recirculation for the backswept inducer, and this increases the pressure loss. However, blade loading near the leading edge is considerably reduced and cavitation inception delayed.

피칭익에서 박리되는 와류의 거동 (Dynamic Behavior of Vortices Separated from a Pitching Foil)

  • 양창조
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권2호
    • /
    • pp.152-158
    • /
    • 2007
  • Most of experimental visualizations and numerical results on the flow field separated form a leading edge around an unsteady foil show a continuous streakline from the leading edge and large reverse flow between the streakline and the suction surface. However, they have not exactly clarified yet the dynamic behavior of vortices separated from the leading edge because separation around an unsteady foil is very complicated phenomenon due to many parameters. In the present study the flow fields around pitching foils have been visualized by using a Schlieren method with a high speed camera in a wind tunnel at low Reynolds number regions. It has been observed that small vortices are shed discretely from the leading and trailing edge and that they stand in line on the integrated streakline of separation shear layer. By counting vortices in the VTR frames it was clarified that the number of vortex shedding from the leading and trailing edge during one pitching cycle strongly depends on the non-dimensional pitching rate. Futhermore the vortices moving up to the leading edge on the suction surface of the pitching foil are visualized. They play an important role to balance the number of vortex shedding from both edges.

전투기급 항공기 기동성 증대를 위한 카나드-앞전플랩 스케줄링 (Canard-Leading Edge Flap Scheduling for the Maneuverability Enhancement of a Fighter Class Aircraft)

  • 정인재;김상진
    • 한국항공우주학회지
    • /
    • 제35권2호
    • /
    • pp.165-170
    • /
    • 2007
  • 날개-동체-카나드 형상 전투기급 항공기 개념설계 기간 동안, 항공기 기동성 증대 방안으로서 카나드-앞전플랩 스케줄링 효과에 대한 연구를 수행하였다. 본 연구에서는 고속 영역에서 카나드-앞전플랩 변위각에 의한 양항특성을 예측하기 위하여 보정된 초음속 패널 방법을 사용하였다. 예측된 양항곡선을 활용하여 카나드-앞전플랩 스케줄링 법칙을 설정하였다. 이러한 카나드-앞전플랩 스케줄 법칙은 양항비를 최대로 하는 카나드-앞전플랩 굽힘과 비행조건과의 관계이다. 카나드-앞전플랩 스케줄링에 의한 결과를 기초로, 제시된 방법은 날개-동체-카나드형상 전투기급 항공기의 기동성을 증대하는데 유용한 것으로 확인되었다.

Effect of Blade Leading Edge Sweep on the Performance of a High Pressure Centrifugal Compressor Impeller

  • Wang, Hongliang;Xi, Guang
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.823-827
    • /
    • 2008
  • The effects of blade leading edge sweep on both the aerodynamic performance and the structure stress of a high pressure centrifugal compressor impeller are numerically investigated. Changes in the flow structure occur as a result of the effect of leading edge sweep on the loading distribution in the tip region. The flow separation is avoided by introducing a sweep of the main blade leading edge and the strength of shock is reduced at the same time. Backswept of the leading edge is found to be beneficial to the impeller performance improving. On the other hand, the structural analysis indicated that high rotating speed of the impeller will cause substantial high bending stresses and radial deflections of the blade. Studies have shown that it is possible to control the stress distribution along the tip and root of the blade by slight adjustments to the sweep angle of the leading edge. These adjustments may be used to design the impeller with lower blade root stress distribution without aerodynamics performance penalty.

  • PDF

A Study on the Flow Characteristics around a Coanda Control Surface

  • Hong, Seok-Jin;Lee, Seung-Hee
    • Journal of Ship and Ocean Technology
    • /
    • 제8권2호
    • /
    • pp.13-19
    • /
    • 2004
  • Jet flows applied tangential to a foil surface near the leading and/or trailing edges increase the lift of the foil by delaying the separation also known as the Coanda effects. Many experimental and numerical studies have proven the effectiveness of Coanda effects on circulation control and the effects have been found to be useful in practical application in many aerodynamics fields. Most of the previous works have studied the effects of the jet blowing near the trailing edges and investigated the influence of jet momentum on lift. A few experimental studies, however, focused on the separation bubble that develops near the leading edge and applied jet flow the edge to remove the bubble but only to find decrease in lift. In the present paper, a Coanda foil of 20% thickness ellipse with modified rounded leading and trailing edges was investigated, and the flow around the foil was numerically studied. The blowing around the leading edge only decreased the lift, as the experiments showed, but the suction considerably increased the lift.