• 제목/요약/키워드: lead nitrate

검색결과 86건 처리시간 0.051초

벼 발아초기 종자를 이용한 고효율 단기형질전환 방법 (High-efficiency and Rapid Agrobacterium-mediated genetic transformation method using germinating rice seeds)

  • 이혜정;;지무근;장대원;조용구
    • Journal of Plant Biotechnology
    • /
    • 제38권4호
    • /
    • pp.251-257
    • /
    • 2011
  • 벼의 염기서열 분석이 완료됨에 따라 유전자의 세포내 기능을 밝히기 위한 기능유전체 연구가 활발히 진행되고 있다. 이를 위해 효율적으로 아그로박테리움을 이용해 원하는 유전자를 식물체 내로 형질전환을 하기 위한 노력은 지금도 계속 진행되고 있다. 본 실험에서는 캘러스를 유기한 후 아그로박테리움을 이용해 접종하는 기존의 방법과 달리, 성숙 종자를 소독한 후 2,4-D가 포함된 액체배지에 24시간 침종하여 배 부분이 발아하기 시작하는 종자를 이용해 바로 아그로박테리움을 접종하여 체세포변이의 발생을 최소화하고 유전자를 포함하고 있는 아그로박테리움이 식물 조직내로 침투할 수 있는 효율을 증가시키며, 그 후 캘러스를 유기하여 재분화 시킴으로써 형질전환 식물체를 얻는 방법을 새롭게 수립하였다. 배양과정 중 공동배양 배지에 아그로박테리움 성장억제물질인 silver nitrate와 항산화 물질인 DTT를 첨가하여 공동 배양 기간을 7일 이상으로 늘림으로써 벼 형질전환효율을 증가시킬 수 있었고, PCR 분석을 통해 원하는 목표 유전자가 형질전환체에 안정적으로 도입이 되는 것도 확인할 수 있었다. 또한, 이 방법은 형질전환 효율이 낮은 일품벼와 같은 품종에도 적용할 수 있을 것으로 판단된다. 이러한 결과를 종합해 볼 때, 본 실험을 통해 얻어진 새로운 공동배양 방법은 우수한 농업적 형질을 가진 벼 육종 소재 및 품종 개발시 효율적으로 이용할 수 있을 것으로 생각된다.

미국 St. Louis Supersite에서의 준 실시간 PM2.5에 대한 기여도 추정 및 지역 규모 오염원의 위치 파악 (Estimation of Source Apportionment for Semi-Continuous PM2.5 and Identification of Location for Local Point Sources at the St. Louis Supersite, USA)

  • 황인조
    • 한국대기환경학회지
    • /
    • 제25권2호
    • /
    • pp.154-166
    • /
    • 2009
  • In this study, 1-hour integrated $PM_{2.5}$ mass and chemical composition concentrations were monitored at the St. Louis-Midwest Supersite in Illinois. Time-resolved samples were collected one week in each of June 2001 (22 June to 28 June), November 2001 (7 November to 13 November), and March 2002 (19 March to 25 March). A total of 427 samples were collected by CAMM (continuous ambient mass monitor) and 15 compounds were analyzed by AAS, PILS (particle-into-liquid sampler), and TOT (thermal optical transmittance) method. PMF was applied to identify the sources and apportion the $PM_{2.5}$ mass to each source for highly time resolved data. In addition, the nonparametric regression (NPR) was applied to identify the predominant directions of local sources relative to wind direction. Also, this study performed compare the NPR analysis and location of actual local point sources at the St. Louis area. The PMF modeling identified nine sources and the average mass was apportioned to gasoline vehicle, road dust, zinc smelter, copper production, secondary sulfate, diesel emission, secondary nitrate, iron+steel, and lead smelter, respectively. These results suggested that this study results will be help for $PM_{2.5}$ source apportionment studies at similar metropolitan area, establish $PM_{2.5}$ standard, and establish effective emissions reduction strategies in Korea.

Changing C-N Interactions in the Forest Floor under Chronic N Deposition: Implications for Forest C Sequestration

  • Park, Ji-Hyung
    • Journal of Ecology and Environment
    • /
    • 제31권3호
    • /
    • pp.167-176
    • /
    • 2008
  • Atmospheric N deposition has far-reaching impacts on forest ecosystems, including on-site impacts such as soil acidification, fertilization, and nutrient imbalances, and off-site environmental impacts such as nitrate leaching and nitrous oxide emission. Although chronic N deposition has been believed to lead to forest N saturation, recent evidence suggests that N retention capacity, particularly in the forest floor, can be surprisingly high even under high N deposition. This review aims to provide an overview of N retention processes in the forest floor and the implications of changing C-N interactions for C sequestration. The fate of available N in forest soils has been explained by the competitive balance between tree roots, soil heterotrophs, and nitrifiers. However, high rates of N retention have been observed in numerous N addition experiments without noticeable increases in tree growth and soil respiration. Alternative hypotheses have been proposed to explain the gap between the input and loss of N in N-enriched, C-limited systems, including abiotic immobilization and mycorrhizal assimilation, both of which do not require additional C sources to incorporate N in soil N pools. Different fates of N in the forest floor have different implications for C sequestration. N-induced tree growth can enhance C accumulation in tree biomass as observed across temperate regions. C loss from forests can amount to or outweigh C gain in N-saturated, declining forests, while another type of 'C-N decoupling' can have positive or neutral effects on soil C sequestration through hampered organic matter decomposition or abiotic N immobilization, respectively.

Influence of Nitric Oxide on Steroid Synthesis, Growth and Apoptosis of Buffalo (Bubalus bubalis) Granulosa Cells In vitro

  • Dubey, Pawan K.;Tripathi, Vrajesh;Singh, Ram Pratap;Sastry, K.V.H.;Sharma, G.Taru
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권9호
    • /
    • pp.1204-1210
    • /
    • 2011
  • Objective of this study was to examine the effect of sodium nitroprusside (SNP), a nitric oxide (NO) donor on steroid synthesis, growth and apoptosis of buffalo granulosa cells (GCs) in vitro. Follicular fluid of antral follicles (3-5 mm diameter) was aspirated and GCs were cultured in 0 (control), $10^{-3}$, $10^{-5}$, $10^{-7}$, $10^{-9}\;M$ of SNP for 48 h. To evaluate whether this effect was reversible, GCs were cultured in presence of $10^{-5}\;M$ SNP+1.0 mM $N^{\omega}$-nitro-L-arginine methyl ester (L-NAME) a NO synthase (NOS) inhibitor or hemoglobin (Hb, $1.0{\mu}g$) as NO scavenger. Nitrate/nitrite concentration was evaluated by Griess method, progesterone and estradiol concentrations by RIA and apoptosis by TUNEL assay. SNP ($10^{-3}$, $10^{-5}$, $10^{-7}\;M$) significantly (p<0.05) inhibited estradiol and progesterone synthesis, growth, disorganized GCs aggregates and induced apoptosis in a dose dependent manner. However, $10^{-9}\;M$ SNP induced the progesterone synthesis and stimulated GCs to develop into a uniform monolayer. Combination of SNP $10^{-5}$ M+L-NAME strengthened the inhibitory effect while, SNP+Hb together reversed these inhibitory effects. In conclusion, SNP at greater concentrations ($10^{-3}$, $10^{-5}$ and $10^{-7}\;M$) has a cytotoxic effect and it may lead to cell death whereas, at a lower concentration ($10^{-9}\;M$) induced progesterone synthesis and growth of GCs. These findings have important implications that NOS derived NO are involved at physiological level during growth and development of buffalo GCs which regulates the steroidogenesis, growth and apoptosis.

Selective Cytotoxicity of a Novel Platinum (II) Coordination Complex on Human Gastric Cancer Cell Lines and Normal Kidney Cells

  • Jung, Jee-Chang;Kim, Young-Kyu;Yim, Sung-Vin;Park, Seung-Joon;Chung, Joo-Ho;Chang, Sung-Goo;Lee, Kyung-Tae;Rho, Young-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.283-291
    • /
    • 1999
  • We have synthesized novel platinum (II) coordination complex containing cis-1,2-diaminocyclohexane (DACH) as a carrier ligand and 1,2-bis(diphenylphosphino)ethane (DPPE) as leaving group. Furthermore, nitrate was added to improve the water-solubility. A new series of [Pt(cis-DACH)(DPPE)] $2NO_3(PC)$ was evaluated its antitumor activity on various MKN-45 human gastric adenocarcinoma cell-lines and normal primary cultured kidney cells. The new platinum complex demonstrated high efficacy in the cytotoxicity on MKN-45 cell-lines as well as adriamycin-resistant (MKN-45/ADR) and cisplatin-resistant (MKN-45/CDDP) cells. The cytotoxicities of PC were found quite less than those of cisplatin in rabbit proximal renal tubular cells, human renal cortical cells and human renal cortical tissues using MTT assay, $[^3H]-thymidine$ uptake and glucose consumption tests. Based on these results, this novel platinum (II) coordination complex, was considered as better a valuable lead for improving antitumor activities with low nephrotoxicities in the development of a new clinically available anticancer chemotherapeutic agents.

  • PDF

Investigation of the groundwater contamination around landfill where slaughtered animals were buried

  • Bark, Jun-Jo;Jung, Hae-Sun;Woo, Jong-Tae;Lee, Sung-Sik
    • 한국동물위생학회지
    • /
    • 제29권4호
    • /
    • pp.459-467
    • /
    • 2006
  • This study was designed to investigate if there were groundwater contamination in 17 landfill where slaughtered animals were buried during the crisis of 2002 foot-and-mouth-disease (FMD) outbreaks in Gyeonggi province. From March to August 2005 groundwater was collected once a month from 17 sites, and examined with potential for hydrogen (pH), colour, turbidity, lead (Pb), arsenic (As), mercury (Hg), cadmium (Cd), copper (Cu), zinc (Zn) , iron (Fe), manganese (Mn) , aluminium (Al), nitrate-nitrogen $(NO_3-N)$, ammonia-nitrogen $(NH_3-N)$, microbial pathogen and Escherichia spp. In the examination of $NH_3-N$ which of the mean concentration was from not-detected (ND) to 0.05 mg/l. The range of $NH_3-N$ level was $0.3-24.1mg/{\ell}$. However, groundwater from four sites was to go beyond the drinking water quality standard (DWQS), i.e., the mean concentration of those were $15.5mg/{\ell}\;(site\;1),\;20.7mg/{\ell}\;(site\;9),\;24.1mg/{\ell}\;(site\;13)\;and\;10.6mg/{\ell}\;(site\;17)$. In the investigation of pH, colour and turbidity, all of the pH were below of DWQS (pH 5.8-6.6), but one site in color test and four sites in turbidity test were over the standard level. Among 9 metal ions examined, Mn was in excess of DWQS, and its concentration was $2.4mg/{\ell}$. Pb, Cd, Hg and As were not traced. The contents of Cu, Zn, Fe and Al were $ND-0.22mg/{\ell},\;0.01-0.05mg/{\ell},\;ND-0.05mg/{\ell}\;and\;0.03-0.16mg/{\ell}$, respectively. Escherichiae spp were not identified, but bacterial colonies were detected at 3 groundwater including 2 sites over the DWQS at the level of $491CFU/m{\ell}\;(site\;4)\;and\;217CFU/m{\ell}\;(site\;15)$.

방사선 조사가 이하선 기능에 미치는 영향에 관한 연구 (IRRADIATION EFFECT ON SECRETING FUNCTION, AMYLASE ACTIVITY AND NUCLEIC ACID CONTENTS OF RAT PAROTID GLAND)

  • 조용진;박태원
    • 치과방사선
    • /
    • 제20권1호
    • /
    • pp.53-62
    • /
    • 1990
  • This experiment was performed to clarify the effects of /sup 60/Co gamma irradiation on secretory function, amylase activity and contents of nucleic acids of parotid gland in rat. Experimental animals were divided into 6th hours, 3rd, 7th, 14th and 28th days after irradiation and control. The experimental animals are singly irradiated with 20Gy (2,000rad) through protective lead block. Secretory function of parotid gland was evaluted by uptake and clearance of /sup 99m/TcO₄. /sup 99m/TcO₄. 0.2μ ci/gm, was injected into peritonium in uptake groups. Rats were sacrified with cervical dislocation after 30 minutes and gland was excised. In the clearance group. pilocarpine nitrate (8㎎/㎏) was intraperitoneally injected at 30 minutes after /sup 99m/TcO₄ injection and rats were sacrified 30 minutes after pilocarpine injection. Radioactivity of excised parotid gland was measured by using of gamma counter and stimulation-secretion coefficients, uptake radioactivity divided by clearance radioactivity, was calculated. Amylase activity and contents of DNA and RNA were determined by spectrophotometry. The results obtained were as follows: 1. In the uptake test, the radioactivity of /sup 99m/TcO₄ per unit weight increase in experimental group except 6th hours group, compared with control groups and showed a peak at 3rd days after irradiation. 2. In the clearance test, the radioactivity of /sup 99m/cO₄per unit weight rose to a peak at 3rd days after irradiation and gradually recovered thereafter. 3. Stimulation-secretion coefficient of parotid gland decreased at 6th hours, 3rd and 7th days after irradiation, and gradually increased. 4. Amylase activity of parotid gland decreased in 3rd and 7th days group, and especially lowest in 3rd days after irradiation. 5. The contents of DNA showed no definite difference in all the experimental groups, but RNA was seemed to decrease with time after irradiation.

  • PDF

높은 산소과전압과 내구성의 이산화납전극 제조에 관한 연구 (A Study on the Preparation of Lead Dioxide Electrode with High Oxygen Overvoltage and Durability)

  • 김재관;최병선;남종우
    • 공업화학
    • /
    • 제7권6호
    • /
    • pp.1105-1114
    • /
    • 1996
  • ${\alpha}-PbO_2/IrO_2-TiO_2/Ti$지지체상에 sodium lauryl sulfate 및 $TiO_2$분말을 첨가한 질산납 전해액에서 전착한 ${\beta}-PbO_2$층의 특성 및 성능을 XRD, SEM, cyclic voltammograms, 매크로전해를 이용하여 검토하였다. XRD분석결과 sodium lauryl sulfate 및 $TiO_2$분말의 존재하에 ${\alpha}-PbO_2/IrO_2-TiO_2/Ti$ 지지체 위에 전착한 ${\beta}-PbO_2$층은 순수한 ${\beta}-PbO_2$층과 마찬가지로 정방정계구조를 나타냈다. SEM결과 sodium lauryl sulfate는 전착층의 결정입자크기를 작게 하는 경향을 보여준다. sodium lauryl sulfate 및 $TiO_2$분말의 존재하에 전착한 ${\beta}-PbO_2$전극은 KOH 및 $HClO_4$지지전해질에서 양극산화에 대한 산소과전압과 내구성을 크게 향상시켰다. 티타늄마드래스에 전착시킨 ${\beta}-PbO_2$전극을 이용하여 과염소산용액으로부터 오존 발생에 대한 전극성능과 내구성을 검토하였다. $HClO_4$지지전해질에 sodium lauryl sulfate와 $TiO_2$분말을 첨가하여 ${\alpha}-PbO_2/IrO_2-TiO_2/Ti$ 마드래스상에 전착한 ${\beta}-PbO_2$전극이 가장 높은 전류효율과 내구성을 가짐을 확인하였다.

  • PDF

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 총회 및 춘계학술발표회
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

녹조 구멍갈파래(Ulva pertusa Kjellman)의 생장 및 색소조성에 미치는 무기 영양염류 및 중금속의 영향 (Effects of Inorganic Nutrients and Heavy Metals on Growth and Pigmentation of the Green Alga, Ulva pertusa Kjellman)

  • 김장균;한태준
    • 환경생물
    • /
    • 제17권4호
    • /
    • pp.427-438
    • /
    • 1999
  • 본 연구에서는 동해와 서해에서 채수된 자연해수에서 녹조 구멍갈파래를 배양하여 생장을 비교하고 아울러 환경오염인자라고 할 수 있는 무기영양염류(질산염과 인산염)와 중금속(구리와 납)의 영향을 평가하였다. 먼저, 광량별 생장율은 서해해수조건보다 동해해수조건에서 뚜렷하게 높게 나타났으며 이때 최적생장광량은 두 조건에서 공히 $100{\mu} molm^{-2} s^{-1}$인 것으로 나타났다. 엽록소 함량의 경우 60 $\mu$molm­$^2$$^1$이하의 광량에서는 동해해수조건에서 높게 나타났으나, $100{\mu} molm^{-2} s^{-1}$이상의 광량에서는 두 조건에서 유사하게 나타났다. 광량과 색소함량 사이에는 일반적으로 반비례관계가 성립되었는데 즉, 광량이 증가함에 따라 색소함량이 감소되었다. 1988년부터 1997년까지 조사된 환경부자료에 의하면 자연해수에서의 질산염의 농도는 서해해수에서 0.88ppm으로써 동해해수의 0.37ppm보다 2배 이상 높았으며 인산염은 동해와 서해해수 모두에서 0.03ppm으로 유사하게 나타났다. 또한 $Cu^{2+}, Pb^{2+}$은 각각 0.004, 0.003ppm으로 환경기준보다 매우 낮은 것으로 보고된 바 있다. 따라서 이러한 자료를 기초로 하여 무기영양염류(질산염과 인산염)와 중금속(구리와 납)이 구멍갈파래에 미치는 영향에 대해 조사하였다. 무기염류의 효과에 대한 연구에서 질산염의 농도가 증가함에 따라 구멍갈파래의 생장율이 증가하였으며 5ppm에서 생장포화를 보이는 것을 관찰할 수 있었다. 인산염은 생장에 특별한 영향을 끼치지 않는 것으로 나타났다. 엽록소 함량의 경우에는 인산염 농도가 증가함에 따라 뚜렷한 양적 증가현상을 보였다. $Cu^{2+}$는 구멍갈파래에 매우 강한 독성을 끼쳐 농도가 증가함에 따라 엽체의 생장율과 엽록소 a,b 그리고 carotenoids함량이 현저하게 감소하였으며 특히 1ppm에서는 carotenoids가 전혀 검출되지 않았다. $Pb^{2+}$는 위와 같은 생장 파라미터에 대하여 특별한 영향을 주지 않았다. 현재 자연해수중에 존재하는 질산염과 인산염, $Cu^{2+}, Pb^{2+}$.등은 그 농도면에 있어서 구멍갈파래의 생장제한요인으로 작용할 정도는 아닐 것으로 판단된다. 그러나 $Cu^{2+}$와 같은 경우 간헐적으로 높은 농도가 기록되는 것을 볼 때 이로인하여 구멍갈파래의 생존에 결정적인 상해를 입힐 수도 있을 것으로 사료된다.

  • PDF