• Title/Summary/Keyword: lead free ceramics

Search Result 209, Processing Time 0.021 seconds

Piezoelectric properties of Pb-free BNKT ceramics with ZnO addition (ZnO첨가에 따른 무연 BNKT계 세라믹스의 압전특성)

  • Ryu, Sung-Lim;Kim, Ju-Hyun;Lee, Mi-Young;Yoo, Ju-Hyun;Seo, Sang-Hyun;Chung, Kwang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.193-195
    • /
    • 2005
  • [ $0.96[Bi_{0.5}(Na_{0.84}K_{0.16})_{0.5}TiO_3]+0.04SrTiO_3+0.3wt%Nb_2O_5+0.2wt%La_2O_3+xwt%ZnO$ ], were studied in order to develope the superior piezoelectric properties of Lead-free piezoelectric ceramics. With increasing amount of ZnO addition, density showed the maximum value of 5.79(g/$cm^3$) at 0wt% ZnO addition, and electromechanical coupling factor($k_p$) and dielectric constant decreased, and mechanical quality factor($Q_m$) increased and showed the maximum value of 280 at 0.4wt% ZnO addition.

  • PDF

Development of Bi0.5(Na0.78K0.22)0.5TiO3 Lead-free Piezoelectric Ceramic Material with Core-shell Structure for Biomedical (바이오 메디컬용 코어-쉘 구조의 Bi0.5(Na0.78K0.22)0.5TiO3계 무연압전세라믹 소재의 개발)

  • Seong-jun Yun;Joonsoo Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.15-22
    • /
    • 2023
  • BNKT Ceramics, one of the representative Pb free based piezoelectric ceramics, constitutes a perovskite(ABO3) structure. At this time, the perovskite structure (ABO3) is in the form where the corners of the octahedrons are connected, and in the unit cell, two ions, A and B, are cations, A ion is located at the body center, B ion is located at each corner, and an anion O is located at the center of each side. Since Bi, Na, and K sources constituting the A site are highly volatile at a sintering temperature of 1100℃ or higher, it is difficult to maintain uniformity of the composition. In order to solve this problem, there should be suppression of volatilization of the A site material or additional compensation of the volatilized. In this study, the basic composition of BNKT Ceramics was set to Bi0.5(Na0.78K0.22)0.5TiO3 (= BNKT), and volatile site (Bi, Na, and K sources) were coated in the form of a shell to compensate additionally for the A site ions. In addition, the physical and electrical properties of BNKT and its coated with shell additives(= @BNK) were compared and analyzed, respectively. As a result of analyzing the crystal structure through XRD, both BNKT(Core) and @BNK(Shell) had perovskite phases, and the crystallinity was almost similar. Although the Curie temperature of the two sintered bodies was almost the same (TC = 290 ~ 300 ℃), it was confirmed that the d33 (piezoelectric coefficient) and Pr (residual polarization) values were different. The experimental results indicated that the additional compensation for a shell additive causes the coarsening, resulting in a decrease in sintering density and Pr(remanent polarization). However, coating shell additives to compensate for A site ion is an effective way to suppress volatilization. Based on these experimental results, it would be the biggest advantage to develop an eco-friendly material (Lead-free) that replaced lead (Pb), which is harmful to the human body. This lead-free piezoelectric material can be applied to a biomedical device or products(ex. earphones (hearing aids), heart rate monitors, ultrasonic vibrators, etc.) and skin beauty improvement products (mask packs for whitening and wrinkle improvement).

Piezoelectric Properties of (K,Na)$NbO_3$ ceramics with the amount of KCN addition (KCN 첨가에 따른 (K,Na)$NbO_3$ 세라믹스의 압전특성)

  • Seo, Byeong-Ho;Sung, Kum-Hyun;Lee, Sang-Ho;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.188-189
    • /
    • 2009
  • In this study, in order to develop excellent lead-free composition ceramics for piezoelectric transformer, $(K_4CuNb_8O_{23})$ added $(K_{0.5}Na_{0.5})(Nb_{0.96}Sb_{0.04})O_3$ ceramics were fabricated using conventional mixed oxide method and their piezoelectric and dielectric properties were investigated as a function of the amount of KCN addition. With increasing the amount of KCN addition, density and mechanical quality factor(Qm), electromechanical coupling factor (Kp) were increased up to 1.2mol% and then decreased. At the 1.2mol% KCN added specimen, mechanical quality factor (Qm), electromechanical coupling factor (Kp), density and dielectric constant (${\varepsilon}r$) showed the optimal values of 781, 0.445, $4.42g/cm^3$ and 443, respectively, for piezoelectric transformer application.

  • PDF

Dielectric and piezoelectric properties of CuO added $(K_{0.5}Na_{0.5})_{0.97}(Nb_{0.96}Sb_{0.04})O_3$ ceramics (CuO첨가에 따른 $(K_{0.5}Na_{0.5})_{0.97}(Nb_{0.96}Sb_{0.04})O_3$세라믹스의 유전 및 압전 특성)

  • Lee, Yu-Hyong;Park, Min-Ho;Noh, Jung-Rae;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.160-161
    • /
    • 2009
  • In this study, in order to develop the lead free piezoelectric ceramics with excellent piezoelectric properties, (Na,K)$NbO_3$ ceramics according to the amount CuO addition were fabricated using a conventional mixed oxide process and their piezoelectric and dielectric characteristics were investigated. At the 0.8mol% CuO added composition, density, electromechanical coupling factor(kp), echanical quality factor(Qm), dielectric constant$(\varepsilon_r$) and piezoelectric constant($d_{33}$) showed the optimum value of $4.459g/cm^3$, 0.469, 540, 410, 69.57pC/N, respectively.

  • PDF

Dielectric and Piezoelectric Properties of (K,Na)NbO3 Ceramics with the amount of K4CuNb8O23 Addition (K4CuNb8O23 첨가에 따른 (K,Na)NbO3 세라믹스의 유전 및 압전특성)

  • Seo, Byeong-Ho;Yoo, Ju-Hyun;Mah, Suk-Burm;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.930-934
    • /
    • 2009
  • In this study, in order to develop excellent lead-free composition ceramics for piezoelectric transformer, ($K_4CuNb_8O_{23}$) added $(K_{0.5}Na_{0.5})(Nb_{0.96}Sb_{0.04})O_3$ ceramics were fabricated using conventional mixed oxide method and their piezoelectric and dielectric properties were investigated as a fu+EY50nction of the amount of KCN addition. With increasing the amount of KCN addition, density and mechanical quality factor(Qm), electromechanical coupling factor (Kp) were increased up to 1.2 mol% and then decreased. At the 1.2 mol% KCN added specimen, mechanical quality factor (Qm), electromechanical coupling factor (Kp), density and dielectric constant (${\varepsilon}r$) showed the optimal values of 781, 0.445, $4.42\;g/cm^3$ and 443, respectively, for piezoelectric transformer application.

Dielectric and Piezoelectric Characteristics of (Na,K)NbO3 Ceramics System According to Sintering Time (소결시간변화에 따른 (Na,K)NbO3계 세라믹스의 유전 및 압전특성)

  • Kim, Do-Hyung;Yoo, Ju-Hyun;Kim, In-Sung;Song, Jae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.901-905
    • /
    • 2008
  • In this study, $0.95(K_{0.5}Na_{0.5})NbO_{3}-0.05Li(Sb_{0.8}Nb_{0.2})O_{3}+0.2\;wt%Ag_{2}O$ were investigated as a variations of sintering times in order to improve dielectric and piezoelectric properties of lead-free piezoelectric ceramics. $Ag_{2}O$ were used as sintering aids and the specimens were sintered during 3, 5, 7, 9 and 11 hours, respectively. At the specimen sintered during 7 hour, Electromechanical coupling factor ($k_p$), density, dielectric constant (${\epsilon}_{\gamma}$), piezoelectric constant ($d_{33}$) and curie temperature ($T_c$) of composition ceramics showed the optimal value of 0.450, 4.274 $[g/cm^3]$, 1007, 257 [pC/N] and $396^{\circ}C$, respectively.

Piezoelectric Properties of (Na,K)NbO3 Ceramics as a Function of K5.4Cu1.3Ta10O29 Addition (K5.4Cu1.3Ta10O29 첨가에 따른 (Na,K)NbO3계 세라믹스의 압전특성)

  • Noh, Jung-Rae;Yoo, Ju-Hyun;Jeong, Yeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.5
    • /
    • pp.379-382
    • /
    • 2010
  • In this study, in order to develop the lead-free piezoelectric ceramics with high piezoelectric and dielectric properties, $(K_{0.5}Na_{0.5})(Nb_{0.97}Sb_{0.03})O_3$ ceramics were fabricated using a conventional mixed oxide process and their piezoelectric and dielectric characteristics were investigated according to the $K_{5.4}Cu_{1.3}Ta_{10}O_{29}$ addition. $K_{5.4}Cu_{1.3}Ta_{10}O_{29}$ addition enhanced density, electromechanical coupling factor($k_p$) piezoelectric constant $d_{33}$ and mechanical quality factor($Q_m$). At the 0.9 mol% $K_{5.4}Cu_{1.3}Ta_{10}O_{29}$ addition, density, electromechanical coupling factor($k_p$), dielectric constant(${\varepsilon}_r$) and piezoelectric constant($d_{33}$) of specimen showed the optimum values of 0.46, 471, and 148 pC/N, respectively.

Piezoelectric Properties of Ag2O Doped 0.95(Na,K)NbO3-0.05LiNbO3 Ceramics (Ag2O 첨가량에 따른 0.95(Na,K)NbO3-0.05LiNbO3 세라믹스의 압전 특성)

  • Chae, Moon-Soon;Shin, Dong-Jin;Koh, Jung-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.435-438
    • /
    • 2012
  • As lead-free piezoelectric materials, $Ag_2O$ doped $0.95(K_{0.5}Na_{0.5})NbO_3-0.05LiNbO_3+x$ mol% (where x = 0, 0.5, 1, 1.5, 2, 2.5 and 3, respectively) ceramics were fabricated by a conventional sintering process. The doping effects on the microstructure and electrical properties of the $0.95(K_{0.5}Na_{0.5})NbO_3-0.05LiNbO_3$ ceramics were systematically investigated. When the 3 mol % $Ag_2O$ doped $0.95(K_{0.5}Na_{0.5})NbO_3-0.05LiNbO_3$ samples were sintered at $1,080^{\circ}C$ for 5 hrs in air, these ceramics showed excellent values of density=4.20 $g/cm^3$, piezoelectric constant ($d_{33}$)=174 pC/N and phase transition temperature$(T_c)=421.6^{\circ}C$, respectively.

Piezoelectric Properties in ZnO Dopped (Na,K)NbO3 Ceramics (ZnO가 첨가된 (Na,K)NbO3계 세라믹스의 압전 특성)

  • Ryu Sung-Lim;Kweon Soon-Yong;Ur Soon-Chul;Kim Si-Chul;Yoo Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.707-711
    • /
    • 2006
  • ZnO was doped up to 0.3 wt% for improving the electrical properties of lead-free $[Li_{0.04}(Na_{0.44}Ko_{0.52})-(Nb_{0.86}\;Ta_{0.10}\;Sb_{0.04})]O_3$ piezoelectric ceramics. The ceramics were fabricated with the conventional sintering processes. Crystal structure of the samples was tetragonal phase regardless of ZnO amount. However, the piezoelectric properties were varied with the ZnO amount. The electro-mechanical coupling factor $(k_p)$ was with the ZnO amount up to 0.2 wt% but decreased with the further addition. the maximum value of $k_p$ was 0.475. Density, piezoelectric charge constant and relative dielectric constant was also showed maximum value at 0.2 wt%. The maximum values are $4.75g/cm^3$, 275 pC/N, 1403, respectively. In contrast, the mechanical quality factor $(Q_m)$ was not varied with increasing the ZnO addition up to 0.2 wt% but rapidly increased at 0.3 wt%.

Dielectric and Piezoelectric Characteristics of the (Na,K)(Nb,Sb)O3 Ceramics as a Function of Na Excess Addition (Na 과잉 첨가에 따른 (Na, K)(Nb, Sb)O3 세라믹스의 유전 및 압전 특성)

  • Seo, Bueong-Ho;Lee, Kab-Soo;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.285-289
    • /
    • 2011
  • In this study, lead-free $(K_{0.5}Na_{0.5+X})(Nb_{0.96}Sb_{0.04})O_3+0.2mol%La_2O_3+1.2mol%$ $K_4CuNb_8O_{23}$ (X= 0~0.025) ceramics were fabricated by normal sintering method at $1060^{\circ}C$ for 5 h. Microstructures, piezoelectric and dielectric properties of specimens were investigated with special emphasis in the influence of Na excess addition. The grain size of specimen was slightly decreased with increasing Na content. In the 2 [mol%] Na excess addition of NKNS ceramics, density, electromechanical coupling factor, piezoelectric constant and electromechancal quality factor of specimen were found to reach the optimum values of 4.25 [$g/cm^3$], 0.4357, 154.43 [pC/N] and 580, respectively.