• Title/Summary/Keyword: lead biomarker

Search Result 38, Processing Time 0.029 seconds

The Study on Possibility of Use of Lead in Plasma as a Chronic Toxicity Biomarker (혈장 중 납의 만성독성 지표로의 활용에 관한 연구)

  • Lee, Sung-Bae;Lim, Cheol-Hong;Kim, Nam Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.195-207
    • /
    • 2019
  • Objectives: This study was performed to confirm whether plasma lead can be used as a chronic biomarker for the biological monitoring of exposure to lead. Methods: Lead concentrations in 66 plasma samples from retired lead workers (G.M. 60.25 years, Median 61.00 years) and 42 plasma samples from the general population (G.M. 53.76 years, Median 56.50 years) were measured using ICP/Mass. Tibia, whole blood, hemoglobin, hematocrit, and blood zinc protophorphyrin (ZPP) concentrations and urinary ${\delta}$-aminolevulinic acid (${\delta}-ALA$) were measured for correlation analysis with plasma lead. Results: The geometric mean concentration of lead in plasma was $0.23{\mu}g/L$ for the retired lead workers and $0.10{\mu}g/L$ for the general population sample. A simple correlation analysis of biomarkers showed that plasma lead concentration among the retired lead workers was highly correlated with lead concentration in the tibia and with blood lead concentration, and the plasma lead concentration among the general population correlated with ZPP concentration in the blood. The lead concentration in the tibia and the lead concentration in the whole blood increased with length of working period. As the period in the lead workplace increased, the ratio of lead in plasma to lead concentration in whole blood decreased. Conclusion: This study confirmed the possibility of a chronic biomarker of lead concentration in blood plasma as a biomarker. In the future, comparative studies with specific indicators will lead to more fruitful results.

Use of Na+/K+ATPase in Maceobrachium nipponnese as a biomaker of lead pollution in aquatic ecosystem (수서생태계 납오염에 대한 생체지표로서 Maceobrachium nipponnese내 Na+/K+ATPase의 활용)

  • Chung, Myung-Kiu;Kim, Hak-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.395-400
    • /
    • 2002
  • Lead is one of the most toxic metal and is detectable in practically all phases of environment and in all biological system. Transport, industrial and domestic waste products are the main sources of this pollutant. Ingested lead is rapidly absorbed and widely distributed throughout the body, causing extensive tissue damage. In this study, we chose the freshwater decapods Maceobrachium nipponnese as a sensitive indicator organism for environmental pollution. In order to investigate the possibility in use of $Na^+/K^+ATPase$ activity as a biomarker of lead pollution, we tested the acute toxicity of lead to Maceobrachium nipponnese. The $LC_{50}(96hr)$ value for lead in Maceobrachium nipponnese was found to be $446{\mu}g/L$ with the 95% confidence limits. The lead exposure group at $LC_{50}$ showed a significant $Na^+/K^+ATPase$ inhibition, depending on the exposure time. Comparision of several concentrations of lead revealed that the $Na^+/K^+ATPase$ activity in Maceobrachium nipponnese was significantly decreased in a concentration dependent manner. These results suggest that $Na^+/K^+ATPase$ activity in Maceobrachium nipponnese may possibly be used as a biomarker of lead pollution in aquatic ecosystem.

Analysis of Trace Level and Correlation of Lead in the Plasma of Field Workers and General Public by ICP-MS (유도결합플라즈마 질량분석법에 의한 납 취급 근로자와 일반인의 혈장 중 납 분석 및 상관성 분석)

  • Lee, Sung-Bae;Yang, Jeong-Sun;Choi, Sung-Bong;Kim, Nam-Soo;Lee, Byung-Kook;Shin, Ho-Sang
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.65-74
    • /
    • 2013
  • Objectives: This study attempted to develop a method to measure ultra-trace lead concentrations in plasma using Inductively Coupled Plasma Mass Spectrometry(ICP-MS) and to test whether plasma lead can be used as a biomarker for the biological monitoring of exposure to lead. Methods: Lead concentrations in 160 plasma samples of field workers and 42 plasma samples from the control group were measured by ICP-MS. Blood zinc protophorphyrin(ZPP) concentrations and urinary ${\delta}$-aminolevulinic acid${\delta}-ALA$) were measured for correlation analysis with plasma lead. Results: The mean lead level in the plasma of the workers exposed to lead at work were 786.1 ng/L. Plasma lead levels were not correlated with blood ZPP or urinary ${\delta}-ALA$ concentrations. Otherwise, plasma lead levels showed a good correlation coefficient of 0.400 with blood lead levels, and their correlation coefficient had a better value of 0.552 for the non-smoking and drinking group. In the general population group which was not exposed to lead in the workplace and was considered the control group, the mean concentration of plasma lead was 123.1 ng/L. The plasma lead levels for the general population group showed a good correlation coefficient of 0.520 with blood ZPP and urinary ${\delta}-ALA$ concentrations.

Tissue proteomics for cancer biomarker development - Laser microdissection and 2D-DIGE -

  • Kondo, Tadashi
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.626-634
    • /
    • 2008
  • Novel cancer biomarkers are required to achieve early diagnosis and optimized therapy for individual patients. Cancer is a disease of the genome, and tumor tissues are a rich source of cancer biomarkers as they contain the functional translation of the genome, namely the proteome. Investigation of the tumor tissue proteome allows the identification of proteomic signatures corresponding to clinico-pathological parameters, and individual proteins in such signatures will be good biomarker candidates. Tumor tissues are also a rich source for plasma biomarkers, because proteins released from tumor tissues may be more cancer specific than those from non-tumor cells. Two-dimensional difference gel electrophoresis (2D-DIGE) with novel ultra high sensitive fluorescent dyes (CyDye DIGE Fluor satulation dye) enables the efficient protein expression profiling of laser-microdissected tissue samples. The combined use of laser microdissection allows accurate proteomic profiling of specific cells in tumor tissues. To develop clinical applications using the identified biomarkers, collaboration between research scientists, clinicians and diagnostic companies is essential, particularly in the early phases of the biomarker development projects. The proteomics modalities currently available have the potential to lead to the development of clinical applications, and channeling the wealth of produced information towards concrete and specific clinical purposes is urgent.

Issues in the Design of Molecular and Genetic Epidemiologic Studies

  • Fowke, Jay H.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.6
    • /
    • pp.343-348
    • /
    • 2009
  • The final decision of study design in molecular and genetic epidemiology is usually a compromise between the research study aims and a number of logistical and ethical barriers that may limit the feasibility of the study or the interpretation of results. Although biomarker measurements may improve exposure or disease assessments, it is necessary to address the possibility that biomarker measurement inserts additional sources of misclassification and confounding that may lead to inconsistencies across the research literature. Studies targeting multi-causal diseases and investigating gene-environment interactions must not only meet the needs of a traditional epidemiologic study but also the needs of the biomarker investigation. This paper is intended to highlight the major issues that need to be considered when developing an epidemiologic study utilizing biomarkers. These issues covers from molecular and genetic epidemiology (MGE) study designs including cross-sectional, cohort, case-control, clinical trials, nested case-control, and case-only studies to matching the study design to the MGE research goals. This review summarizes logistical barriers and the most common epidemiological study designs most relevant to MGE and describes the strengths and limitations of each approach in the context of common MGE research aims to meet specific MEG objectives.

Detection of Endocrine-Disrupting Chemicals in Fish and the Use of Fish Vitellogenin as a Biomarker (어류를 이용한 내분비계 장애물질 검출 및 Biomarker로서 Vitellogenin의 이용)

  • Yoon, Seok-Joo;Kim, Il-Chan;Yoon, Yong-Dal;Lee, Jae-Seong
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.97-107
    • /
    • 2003
  • Fish vitellogenin produces in female liver during oogensesis through estradiol cycle, and produces even in male liver by endocrine-disrupting chemicals (EDCs) such as alkylphenols. The resulting effects of EDCs lead to the low fecundity of female and the feminization (eg. shrinkage of testis) in male. Especially, the production of vitellogenin in male indicates the environmental contamination of EDCs, resulting in the modulation of gene expression profiles and the monitoring of environmental contamination at specific area. In this paper, we suggest that fish vitellogenin is useful for biomonitoring for environmental contamination and would be substantially useful as a biomarker for a detection of EDCs in aquatic environment.

Occupational Health Management in the Lead Industry: The Korean Experience

  • Lee, Byung-Kook
    • Safety and Health at Work
    • /
    • v.2 no.2
    • /
    • pp.87-96
    • /
    • 2011
  • In 1967, the problem of occupational lead exposure came to public attention in Korea. Since then, regular progress has been made in lowering workplace lead exposures, instituting new workplace controls, and implementing health examinations of exposed workers. Past serious lead poisoning episodes made it possible to introduce biological monitoring programs on a voluntary basis in high-lead-exposure facilities in Korea. Industry-specific occupational health services for lead workers in Korea during the last 22 years can be categorized into three phases. During the first phase (1988-1993), efforts were directed at increasing awareness among workers about the hazards of lead exposure, biological monitoring of blood zinc protoporphyrin began, and a respiratory protection program was introduced. During the second phase (1994-1997), a computerized health management system for lead workers was developed, blood-lead measurement was added to biologic monitoring, and engineering controls were introduced in the workplace to lower air-lead levels to comply with air-lead regulations. Finally, during the third phase (1998-present), a new biomarker, bone-lead measurement by X-ray fluorescence, was introduced. Bone-lead measurement proved to be useful for assessing body burden and to demonstrate past lead exposure in retired workers. Occupational health service practice for lead workers, including the industry-specific group occupational health system, has brought considerable success in the prevention of lead poisoning and in reducing the lead burden in Korean lead workers during the last several decades. The successful achievement of prevention of lead poisoning in Korea was a result of the combined efforts of lead workers, employers, relevant government agencies, and academic institutes.

HSP70 and HSC70 gene Expression in Chironomus Tentans (Diptera, Chironomidae) larvae Exposed to Various Environmental Pollutants: Potential Biomarker for Environmental Monitoring

  • Lee Sun Mi;Choi Jin Hee
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.1
    • /
    • pp.32-39
    • /
    • 2005
  • In order to identify potential biomarkers of environmental monitoring, we evaluated heat shock genes expressions as effects of various environmental pollutants (nonylphenol, bisphenol-A, 17a­ethynyl estradiol, bis(2-ethylhexyl)phthalate, endosulfan, paraquat dichloride, chloropyriphos, fenitrothion, cadmium chloride, lead nitrate, potassium dichromate, benzo[a]pyrene and carbon tetrachloride) on larvae of aquatic midge Chironomus tentans (Diptera, Chironomidae). Heat shock protein 70 gene expression increased in most of chemicals treated larvae compared to control. The response was rapid and sensitive to low chemical concentrations but not stressor specific. In conjunction with stressor specific biomarkers, heat shock protein 70 gene expression in Chironomus might be developed for assessing exposure to environmental stressors in the fresh water ecosystem. Considering the potential of Chironomus larvae as biomonitoring species, heat shock gene expression has a considerable potential as a sensitive biomarker for environmental monitoring in Chironomus.

  • PDF

Vitellogenin as a Biomarker of Endocrine Disrupter in the Aquatic Environment

  • Ryu, Beoung-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.14 no.4
    • /
    • pp.408-414
    • /
    • 1999
  • A number of chemical released into the environment eliciting their effects by disrupting normal hormonal pathways. Endocrine disrupting compounds are present in the aquatic environment and pose potential health consequences to wildlife and humans. This review are designing fur xenobiotic estrogens based on induction of the egg-yolk precursor protein vitelloge-nin. In fish of aquatic environment, it may result in decrease fertility and egg production in females or lead to reduced gonad size or feminization of genetic male fish. It has been known that male fish exposed to estrogenic compounds show induced production of vitellogenin. Vitello-genin production is normally restricted to adult females, which have elevated estrogen levels during egg production. However, vitellogenin can be induced in males by Pollution of environmental endocrine disruptors. Consequently, the presence of vitellogenin in male fish can serve as an indicator of exposure of environmental endocrine disrupting compounds. In immature fish pol-luted at low levels of environmental endocrine disrupter, vitellogenin can serve as a reliable biomarker for exposure to endocrine disrupter. This review demonstrates the utility of vitellogenin as a biomarker fur exposure to estrogenin agents in auqatic environment.

  • PDF

Biological Constituents of Aged Garlic Extract as Biomarker (숙성마늘 extract 의 biomarker로서 생리활성 성분)

  • Yang, Seung-Taek
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.138-146
    • /
    • 2009
  • Garlic (Allium sativum) are an agronomically important genus because of their sulfur flavour components. The majority of the volatiles flavour principles are generated through the enzymatic hydrolysis of the non-volatile organosulfur compounds. However, these compounds may be possible sources of new novel bioacuve and therapeutic principles. Garlic has strong antioxidant activity, and epidemiological studies support the fad that diets rich of garlic may prevent some of the chronic diseases. The health cares of garlic likely arise from a wide variety of components, which may work synergistically. The chemical changes of garlic composition makes it plausible that a variation in processing can lead to acquisition of differential chemical compositions of garlic products. Especially highly unstable allicin can easily disappear during processing and are quickly transformed into a various organosulfur compounds. Various supplements of garlic, particularly aged garlic extract (AGE), are known to possess a promising antioxidant potential and are effective in prevention of chronic diseases because of the bioactive constituents. Although all of active ingredients of AGE are not elucidated, water-soluble components of AGE, including S-allylcysteine, S-allylmercaptane, steroid saponins, tetrahydro-${\beta}$-carboline derivatives, and fructosyl-arginine, appears to be associated with the pharmacological effects of AGE. Consequently, the allicin free garlic components such as S-allylcysteine, S-allylmercaptane, steroid saponins, tetrahydro-${\beta}$-carboline derivatives, and fructosyl-arginine can be applicable to standardization of the quality of commercial garlic products. This review provides an insight into garlic's biomarkers and presents evidence that they may either prevent or delay chronic disease associated with aging.