• Title/Summary/Keyword: leached

Search Result 489, Processing Time 0.024 seconds

Influences of pH on Heavy Metal Leaching in Water Supply Pipelines (상수도관내 중금속 용출에 대한 수소이온농도의 영향 평가 연구)

  • Lee, Jeongwon;Noh, Yoorae;Park, Joonhong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.73-82
    • /
    • 2017
  • In Korea, previous certification of water supply infrastructure was mainly focused on economical and physical aspects. Recently, hygienic safety of water supply service has become a sensitive and important issue to our people for evaluating the water quality with growth of economy and education system. According on water quality in 497 Korean water supply facilities, pH values in the supplied water have ranged between 5.8-8.5. However, little is known about metal leachability at the pH conditions observed in the real water supply systems because a fixed pH condition (pH 7.0) has been used in the current standard method, 'Hygienic Safety Testing Method', in water supply. In this work, we examined the effects on heavy metal leachability with pH differences in the water supply pipes which are typically used in Korea. As a result, the amounts of metal leachability were tended to increase when pH levels were decreased. Especially at pH 5.8, Cu leachability from Cu pipes was found to exceed the public health standard level even after applying a normalization factor (NF) given by the current Korea standard method. The Cr and Cu leached from stainless steel pipes, Cd, Pb, Cu, and Zn from Cu-based pipe fittings, and Zn from Zn-based pipe fittings were exceeded the Korean hygienic safety standards while, after applying the NF, concentrations of the leached metals were satisfied with the current Korean standard. The findings from this work provide implications on the needs of reforming the current hygienic safety standard methodology.

Manufacture and Application of anhydrous calcium sulfate from flue gas desulfurization gypsum (排煙脫黃石膏로부터 無水石膏 製造 및 適用 特性)

  • Hyun, Jong-Yeong;Jeong, Soo-Bok;Chae, Young-Bae;Kim, Byung-Su
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.10-18
    • /
    • 2005
  • The manufacture property of anhydrous calcium sulfate (anhydrite Ⅱ) from flue gas desulfurization (FGD) gypsum discharged from domestic thermoelectric power plants to apply as an auxiliary material of cement and concrete by high temperature treatment were investigated. The FGD gypsum was completely converted to anhydrite Ⅱ at the temperature of 700$^{\circ}C$ and the retention time of 1 hr. In the phase transformation process, particle size was also changed. The chemical composition, particle size and heat property of anhydrite Ⅱ made from the FGD gypsum were similar to them of natural gypsum. In the leaching test of sulfate ion (SO$_4^{2-}$) at the temperature of 90$^{\circ}C$ and the retention time of 1 hr, the amount of leached SO$_4^{2-}$ for the anhydrite Ⅱ that was sintered at 700$^{\circ}C$ for 1 hr was about 50 wt.% based on that of natural gypsum. In addition, the amount of leached SO$_4^{2-}$ for the anhydrite Ⅱ by adding the slaked lime of 3 wt.% decreased about 70 wt.% comparing with that of natural gypsum. In the application test, the compressive strength of cement and concrete manufactured by using the anhydrite Ⅱ as an auxiliary material were similar or superior compared with them of cement and concrete done by natural gypsum as an auxiliary material.

Sorption and Leaching Characteristics of Diesel-Contaminated Soils Treated by Cold Mix Asphalt (Cold Mix Asphalt로 처리한 디젤 오염 토양의 흡착 및 용출특성)

  • Seo Jin-Kwon;Hwang Inseong;Park Joo-Yang
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.4
    • /
    • pp.24-31
    • /
    • 2004
  • A cold mix asphalt (CMA) treatment process was proposed as a tool to recycle soils contaminated with petroleum hydrocarbons. Experimental studies were conducted to characterize performances of the CMA process in treating soils contaminated with diesel or diesel compounds. From the screening experiments, it was found that performances of five types of asphalt emulsions that contained a cationic or an anionic or a nonionic surfactant were not substantially different. In consideration of higher affinity for soils and higher sorption coefficients obtained, an emulsion containing Lauryl Dimethyl Benzyl Ammonium Chloride (LDBAC) was selected as a promising asphalt emulsion for treating diesel-contaminated soils. When the asphalt emulsion LDBAC was applied to treat three compounds that originated from diesel, the removal efficiencies obtained in the order of decreasing efficiencies were as follows: docosane > pentadecane > undecane. Leaching experiments on the specimen formulated by the emulsion LDBAC found that the selected treatment method could treat soils with diesel concentrations as high as 10,000 mg/kg. Leaching of the diesel from the specimen was controlled by diffusion for the first four days and then leaching rate diminished substantially. The latter behavior was characterized as depletion, which represents that the contaminant released amounts to more than $50\%$ of the total amount of the contaminant that can be leached. The amounts of three diesel compounds leached from the specimen in the order of decreasing amount were undecane, pentadecane, and docosane. The curing of the soil contaminated with pentadecane was relatively slow.

Effects of Simulated Acid Rain on Soil Chemical Properties (인공산성비 처리가 토양의 화학적 성질에 미치는 영향)

  • Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.400-406
    • /
    • 1998
  • To investigate the effect of simulated acid rain on the change in soil chemical properties, simulated acid rain of different pH was applied to the three soils of different texture. Simulated acid rain of pH 4.0 and 6.0 did not greatly change the soil pH, while simulated acid rain of pH 2.0 decreased greatly the soil pH. Decrease in soil pH were in the order of sandy loam > loam > clay loam, while increase in exchangeable acidity was in the order of clay loam > loam > sandy loam. Amount of nutrients leached downward due to the penetration of simulated acid rain into the soil was in the order of Ca > K > Mg. Exchangeable Al was not detected when soil acidity dropped to pH 5 and exchangeable acidity increased within a range of CEC. A total 1200mm of simulated acid rain(pH 3.0) can load $12kg\;ha^{-1}$ of $H^+$ ion, $128kg\;ha^{-1}$ of sulfur, $56kg\;ha^{-1}$ of nitrogen. The acidity of simulated acid rain pH 3.0 can be neutralized by addition of $444kg\;ha^{-1}$ of slaked lime. The amount of leached bases were equivalent to 923, 1731 and $1608kg{\cdot}ha^{-1}$ in sandy loam, loam and clay loam soil respectively.

  • PDF

Titanium Dioxide Recovery from Soda-roasted Spent SCR Catalysts through Sulphuric Acid Leaching and Hydrolysis Precipitation (소다배소 처리된 탈질 폐촉매로부터 황산침출과 가수분해 침전반응에 의한 TiO2의 회수)

  • Kim, Seunghyun;Trinh, Ha Bich;Lee, Jaeryeong
    • Resources Recycling
    • /
    • v.29 no.5
    • /
    • pp.48-54
    • /
    • 2020
  • Sulphuric acid (H2SO4) leaching and hydrolysis were experimented for the recovery of titanum dioxide (TiO2) from the water-leached residue followed by soda-roasting spent SCR catalysts. Sulphuric acid leaching of Ti was carried out with leachate concentration (4~8 M) and the others were fixed (temp.: 70 ℃, leaching time: 3 hrs, slurry density: 100 g/L, stirring speed: 500 rpm). For recovering of Ti from the leaching solution, hydrolysis precipitation was conducted at 100 ℃ for 2 hours in various mixing ratio (leached solution:distilled water) of 1:9 to 5:5. The maximum leachability was reached to 95.2 % in 6 M H2SO4 leachate. on the other hand, the leachability of Si decreased dramatically 91.7 to 3.0 % with an increase of H2SO4 concentration. Hydrolysis precipitation of Ti was proceeded with leaching solution of 8 M H2SO4 with the lowest content of Si. The yield of precipitation increased proportionally with a dilution ratio of leaching solution. Moreover, it increased generally by adding 0.2 g TiO2 as a precipitation seed to the diluted leaching solution. Ultimately, 99.8 % of TiO2 can be recovered with the purity of 99.46 % from the 1:9 diluted solution.

Leaching Characteristics of Arsenic and Heavy Metals and Stabilization Effects of Limestone and Steel Refining Slag in a Reducing Environment of Flooded Paddy Soil (담수된 논토양의 환원 환경에서 비소 및 중금속의 용출특성과 석회석 및 제강슬래그의 안정화 효과 검토)

  • Yun, Sung-Wook;Kang, Sin-Il;Jin, Hae-Geun;Kim, Ha-Jin;Yu, Chan
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.251-263
    • /
    • 2011
  • In order to investigate treatment effects of limestone and steel refining slag for paddy soils contaminated with arsenic and heavy metals, a lab-column test was carried out under reducing environments of flooded paddy soils. In conditions of the flooded paddy soils, at the point of time when iron and manganese were reduced and leached rapidly, heavy metals also leached rapidly, and some leachate samples from an untreated soil exceeded regulatory standards. On the contrary, all samples from soils treated with limestone 5% and steel refining slag 5% respectively were below the regulatory standards, showing much lower heavy metal concentrations than in the untreated soil. Arsenic increased continuously during the observation period according to its typical characteristics, and along with decreasing redox potential, arsenic was expected to leach as $H_3AsO_3$-of form $A^{3+}$ with high mobility and strong toxicity. Limestone and steel refining slag showed high treatment effects against heavy metals present in soil and steel refining slag especially showed the high treatment effects against arsenic.

Study on Recovery of Precious Metal (Ag, Au) from Anode Slime Produced by Electro-refining Process of Anode Copper (양극동의 전해정련시 발생된 양극슬라임으로부터 귀금속(Ag, Au) 회수에 대한 연구)

  • Kim, Young-Am;Park, Bo-Gun;Park, Jae-Hun;Hwang, Su-Hyun
    • Resources Recycling
    • /
    • v.27 no.6
    • /
    • pp.23-29
    • /
    • 2018
  • Recently rapid economic growth and technological development have led to an increase in the generation of waste electrical and electronic equipment (WEEE). As the amount of electric and electronic waste generated increases, the importance of processing waste printed circuit boards (PCB) is also increasing. Various studies have been conducted to recycle various valuable metals contained in a waste PCB in an environmentally friendly and economical manner. To get anode slime containing Ag and Au, Anode copper prepared from PCB scraps was used by means of electro-refining. Ag and Au recovery was conducted by leaching, direct reduction, and ion exchange method. In the case of silver, the anode slime was leached at 3 M $HNO_3$, 100 g/L, $70^{\circ}C$, and Ag was recovered by precipitation, alkali dissolution, and reduction method. In the case of gold, the nitrate leaching residues of the anode slime was leached at 25% aqua regia, 200 g/L, $70^{\circ}C$, and Au was recovered by pH adjustment, ion exchange resin adsorption, desorption and reduction method. The purity of the obtained Au and Ag were confirmed to be 99.99%.

Assessment of Pollution Characteristics of Surface Sediments from Lake Andong(II): Studies on the Nutrient and Heavy Metal Release Characteristics from Sediments in Andong Dam (안동댐 퇴적물의 오염도 평가(II): 안동댐 퇴적물에 대한 영양염류 및 중금속 용출 특성 연구)

  • Kim, Young Hun;Park, Jae Chung;Shin, Tae Cheon;Kim, Jeong Jin
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.391-405
    • /
    • 2020
  • Leaching chracteristics of Andong-dam sediment was conducted for heavy metal and nutrients. Five mixed sediment samples were prepared and leaching was conducted under aerobic and anaerobic condition for 60 days. Cd, Cu, Pb, Cr, Zn, Hg, As, Fe, Mn, phosphorus, and nitrogen were analyzed at each sampling time. The leaching rate of phosphorus was higher in anaerobic condition comparing with that of under aerobic condition. Some samples showed higher than the water-quality level IV. In case of As and Cd which showed highest contamination level in the sediment, leached concentration were 0.028 mg/L and 0.003 mg/L in maximum, respectively. The leached concentration is below than the lake water quality standard of Korea. Other heavy metals including Cu, Pb, and Cr also showed similar trend. Five step sequential extraction showed that easily extractable 1-2 step portion such as ion-exchangeable and adsorbed one was less than 10% and the most of the portion was residual. For As and Cd, the residual portion were 80% and 95% respectively indicating the risk by the heavy metal leaching into the lake for a short period was not high in comparing with the contamination levels.

Behavior of Oxidative Precipitation of High-Arsenic (III) Solution Utilizing Activated Carbon with Air Injection (공기와 활성탄 병용에 의한 용액 중 고농도 3가 비소의 산화-침전 거동 연구)

  • Kim, Rina;Kim, Gahee;Kim, Kwanho;You, Kwang-suk
    • Resources Recycling
    • /
    • v.30 no.4
    • /
    • pp.11-19
    • /
    • 2021
  • Arsenic (As) oxidation followed by precipitation from a high-As(III)-containing leaching solution derived from a sulfidic ore was investigated in this study to remove aqueous As from the solution using activated carbon (AC) with air injection as an oxidant. To obtain the initial leaching solution, a domestic sulfidic ore was leached in a sulfuric acid solution at pH 1 and 50℃ for 95 h, and approximately 7 g/L of Fe and 3 g/L of As were leached out. To determine the effect of the oxidative reaction utilizing AC with air injection, the leaching solution was tested under the following five oxidative conditions at an initial pH of 1 and 90℃ for 72 h: air-only injection; air injection with 1, 5, and 10 w/v% of AC addition; and H2O2 addition. The tests in the presence of both air and AC revealed that the oxidation kinetics and As removal were improved by the reaction between the metallic species and the surface group formed on the AC surface. In addition, the greater the amount of AC added, the better was the reaction efficiency, removing 93-94% of As with more than 5 w/v% of AC addition. Finally, X-ray diffraction analysis confirmed that the precipitate formed from the oxidative reaction was scorodite (FeAsO4·2H2O).

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.