• Title/Summary/Keyword: leachate volume

Search Result 59, Processing Time 0.026 seconds

Preliminary Study of Semi-continuous Liquid Recirculating Anaerobic Digestion for Source Separated Food Waste (음식물류 폐기물 처리를 위한 준 회분식 액순환 건식 혐기성 소화법에 대한 기초연구)

  • Cho, Chan-Hui;Lee, Byong-Hi
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.2
    • /
    • pp.28-35
    • /
    • 2015
  • In this study, the experiment was carried out to produce methane by applying Semi-Continuous Leachate Recirculation Anaerobic Digestion System fed with source separated food waste from school cafeteria. There were two systems and each system consisted of a bioreactor and a liquid tank. Each bioreactor had a screen near the bottom of the reactor. 2.5L of separated liquid was transferred to the liquid tank for 30min each day by using a tubing pump and the liquid from the liquid tank was pumped to the bioreactor at the upper of the bioreactor as soon as the transfer was ended. Through this circulation, the liquid having high concentration of VFAs was supplied to the top of bioreactor. At the beginning of the experiment, food waste/inoculum anaerobic sludge volume ratio was 2:8 that is 9g VS/L of OLR(Organic Loading Rate). Feeding was conducted every two weeks. Experimental results showed that the contents of moisture, combustible matter, ash were 65.91%, 32.73%, and 1.36%, respectively. Two different food waste loading were studied. The average organic loading rates were 3.51g VS/d for System A and 3.86g VS/d for System B, respectively. The average produced methane based on food waste fed to bioreactor were observed as $6.30m^3CH_4/kgVS{\cdot}d$ for system A and $4.94m^3CH_4/kgVS{\cdot}d$ for System B, respectively.

An Investigation into the Release of Chemical Oxygen Demand in Organic Filter Media (유기성 여재로부터 화학적 산소요구량 물질의 방출에 관한 연구)

  • Guerra, Heidi B.;Kim, Youngchul
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.171-177
    • /
    • 2020
  • To improve the nitrogen reduction capability of stormwater treatment systems subjected to intermittent saturation, organic materials are often added as filter media. However, these materials can be an additional source of organic carbon and increase the chemical oxygen demand (COD) in the outflow. In this study, different types of organic filter media were subjected to a batch leaching test to observe and quantify the release of COD. Results reveal that the initial pH of the tap water used for soaking which is 7.5-7.7 is conducive to the release of organics from the media to the leachate. The highest amount of COD released was observed in yard clippings and woodchip followed by compost and bark mulch. The leaching of organics also increased as the size of the media decreases due to higher surface area per volume. In addition, empirical regression analysis predicted that COD from these organic media will be exhausted from the material in 3-5 months to up to 26 months depending on the type of media. The results of this study can serve as a guide in estimating the potential release of COD in organic media in order to ensure their safe application in stormwater treatment facilities.

A study on the introduction of organic waste-to-energy incentive system(II): material and energy balance of biogasification (유기성폐자원에너지 인센티브제도 도입방안 연구(II): 바이오가스화 물질·에너지수지)

  • Moon, Hee-Sung;Kwon, Jun-Hwa;Lee, Won-Seok;Lee, Dong-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.77-86
    • /
    • 2021
  • In this study, to use as basic data for the organic waste resource energy incentive system, the energy efficiency is evaluated through the mass balance and energy balance calculation results of the anaerobic digester where food waste, food waste leachate and various organic wastes are treated. As a result of the mass balance analysis for 11 biogasification facilities, it was confirmed that 21.1% of process water and 25.7% of tap water were input in large amounts, excluding organic waste. Accordingly, it accounted for 87.6% of the total effluent of linked treated water. In addition, considering that 15.7% of the total input volume is converted to biogas and the average total solids (TS) is 22%, an average material conversion rate of 75% was confirmed. As a result of the energy balance analysis, the energy conversion rate was confirmed to be 78.5% on average by analyzing the biogas calorific value compared to the potential energy of the influent. The average biogas production efficiency including external energy sources for biogas production was 69.4%, and the biogas plant efficiency to which unused effluent energy was applied was 58.9% on average.

Leaching of Organophosphorus and Carbamate Pesticides in Soil Column and Prediction of Their Mobility Using the Convective Mobility Test Model in Soils (유기인계 및 카바메이트계 농약의 토주용탈과 대류이동성 모형에 의한 이동성 예측)

  • Kim, Chan-Sub;Ihm, Yang-Bin;Lee, Hee-Dong;Oh, Byung-Youl
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.350-357
    • /
    • 2005
  • This study was conducted to investigate the downward mobility of pesticides using soil columns and to compare the experimental results with values predicted from Convective mobility test model. Nine pesticides such as metolcarb, molinate, fanobucarb, isazofos, diazinon, fenitrothion, dimepiperate, parathion and chlorpyrifos-methyl were used for leaching test in soil column for four soils; Jungdong (upland soil), Gangseo (paddy soil), Yesan (forest soil), and Sineom(upland, volcanic ash-derived soil) series. The peak concentrations leached from 10 cm-columns of three soils except Sineom series ranged 6.5 to 12.6 mg/L for metolcarb, 2.6 to 5.0 mg/L for molinate, 4.5 to 7.8 mg/L for fenobucarb, 0.39 to 1.36 mg/L for dimepiperate, 1.1 to 4.6 mg/L for isazofos, 0.01 to 0.14 mg/L for diazinon, lower than 0.01 to 0.70 mg/L for fenitrothion and lower than 0.01 to 0.44 mg/L for parathion. But chlorpyrifos-methyl was not leached from any soil columns. Elution volumes to reach the peak of metolcarb, molinate, fenobucarb, isazofos, diazinon, and dimepiperate in the leachate ranged 1.1 to 2.1 pore volume (PV), 1.6 to 3.3 PV, 1.6 to 3.3 PV, 2.1 to 4.4 PV, 6 to 15 PV, and 8 to 21 PV, respectively. On the same water flux conditions, convection times estimated by Convective mobility test model were coincided with results from soil column test in most of the soil-pesticide combinations applied. Based on convection times estimated by the model at standard conditions (water flux 1 cm/day), metolcarb was classified as most mobile, molinate, fenobucarb and isazofos as mobile or most mobile, dimepiperate as moderately mobile or mobile, diazinon as mobile, fenitrothion and parathion as slightly mobile or mobile and chlorpyrifos-methyl as immobile or slightly mobile.

Leaching and mobility prediction of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils (Butachlor, ethoprophos, iprobenfos, isoprothiolane 및 procymidone의 토양 중 용탈과 이동성 예측)

  • Kim, Chan-Sub;Park, Kyung-Hun;Kim, Jin-Bae;Choi, Ju-Hyeon
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.300-308
    • /
    • 2002
  • This study was conducted to investigate the downward mobility of pesticides using soil colunms and to compare the experimental results with predicted values from Convective mobility test model. Five pesticides including ethoprophos, procymidone, iprobenfos, isoprothiolane, and butachlor were subjected to soil column leaching test for three types of cultivation soils. The concentrations of ethoprophos, iprobenfos, procymidone, isoprothiolane and butachlor leached from soil column of 30 cm depth ranged $0.74{\sim}3.61mg/mL,\;0.36{\sim}1.67mg/L,\;0.16{\sim}0.84mg/L,\;0.16{\sim}0.67mg/L$ and lower than 0.15 mg/L, respectively. Elution volume to reach the peak of ethoprophos, iprobenfos, procymidone, isoprothiolane and butachlor in the leachate ranged $2{\sim}4PV,\;3{\sim}10PV,\;5{\sim}13PV,\;4{\sim}14PV\;and\;19{\sim}61PV$, respectively. Convection times predicted by Convective mobility test model at standard conditions were $9{\sim}18$ days for ethoprophos, $17{\sim}35$ days for iprobenfos, $24{\sim}54$ days for isoprothiolane, $21{\sim}65$ days for procymidone and $105{\sim}279$ days for butachlor. Based on these convection times, ethoprophos was classified as mobile or most mobile, isoprothiolane and procymidone as moderately mobile or mobile and butachlor as slightly mobile. On the same conditions, convection times from the model were coincided with those from soil column test in most of the soil-pesticide combinations applied. Therefore, Convective mobility test model could be applied to predict convection times of pesticides.

Effects of Soil Bulk Density on Saturated Hydraulic Conductivity and Solute Elution Patterns (토양의 용적밀도에 따른 포화수리전도도 및 음이온의 용출양상)

  • Kim, Pil-Joo;Lee, Do-Kyoung;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.3
    • /
    • pp.234-241
    • /
    • 1997
  • The effects of bulk densities(${\rho}_b$) on saturated hydraulic conductivity (Ksat) and solute elution patterns were investigated from five different bulk densities ranging from $1.1Mg/m^3$ to $1.5Mg/m^3$ with each increment of $0.1Mg/m^3$. The hydraulic conductivities observed were divided into two stages: (1) a linearly decrease with increase in bulk density up to $1.4Mg/m^3$, (2) a steady state where the bulk density is greater than $1.4Mg/m^3$. Using the saturated hydraulic conductivity at the steady state, we figured out the equation describing the correlation between bulk densities(${\rho}_b$) and saturated hydraulic conductivity(Ksat) as follows: $Ksat=-19.2({\rho}_b{^2})+6{\rho}_b+15.5$, (r=0.985). Electrical conductivity(EC) measured from the leachate of the soil column showed that EC at the same pore volume were decreased with an increase in the bulk density from $1.2g/cm^3$, $1.5g/cm^3$, as shown in the time taken to collect the same pore volume at each respective bulk density. The maximum relative concentrations (C/Co=1) from the breakthrough curves for the anions of $Cl^-$, $NO_3{^-}$ and $SO_4{^{2-}}$, which are weakly adsorbed on the soil particles, moved to the right of the graph, while a distinctive retardation occurs at the bulk density between $1.3Mg/m^3$ and $1.4Mg/m^3$. The time taken to recover about 90% of indigenous sulphate was approximately twice as those of chloride and nitrate, resulting in slightly stronger adsorption characteristics for sorption sites on the soil surface. Thus, we can conclude that the salt accumulation in green house soil might be significantly influenced by it's bulk density at the soil depth, as well as the adsorption capacity of ions for the sorption sites in soils.

  • PDF

Adsorption and movement of Alachlor and Chlorothalonil in the representative soil of Cheju Island (제주도 대표 토양에서 Alachlor와 Chlorothalonil의 흡착과 이동 연구)

  • Hyun, Hae-Nam;Oh, Sang-Sil;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.2
    • /
    • pp.135-143
    • /
    • 1995
  • This study was conducted to investigate the adsorption characteristics, distribution coefficients, and movement of alachlor(2-chloro-2', 6'-dimethyl-N-(methoxymethyl) acetanilide) and chlorothalonil(tetrachloroisophthalonitrile) for the 3 soils sampled from major soil groups in Cheju Island. Namwon, Jeju, and Mureng soils used in this study were classified as black volcanic ash soil, dark brown volcanic ash soil and dark brown nonvolcanic soil, respectively. Organic carbon content and CEC of Namwon soil were very high and those of Mureung soil were very low. Linear and Freundlich adsorption isotherms were the best to fit the adsorption of alachlor and chlorothalonil in the soils. K value, Freundlich coefficient, of alachlor for Namwon soil was 21.38, being 5.4 and 97.2 times higher than that for Jeju and Mureung soils respectively. The values of chlorothalonil for the soils were similar to those of alachlor but were much higher than them. When Mureung, Jeju and Namwon soil columns were leached with a solution containing 10.25 mg/l of alachlor and 1.50 mg/l of chlorothalonil, alachlor was first detected at 0.265, 0.47, and 1.86 pore volume (PV) and chlorothalonil was 3.71, 4.7 and 17.5 PV, respectively. The pore volumes at $C/C_o=1$ of alachlor in the leachates from Mureung, Jeju and Namwon soil columns were 1.1, 3.7 and 6.6 PV and those at $C/C_o=0.2$ of chlorothalonil were 7.5, 8.5 and 27.5, respectively. This means that the deceasing order of the mobility of the chemicals in soils was Mureung soil>Jeju soil${\gg}$Namwon soil. The pore volumes detecting $C/C_o=0.5$ of alachlor and $C/C_o=0.05$ of chlorothalonil in leachate were positively correlated with the distribution coefficients for the soils.

  • PDF

Development of a Pre-treating Equipment and the Carcass Disposal System for Infected Poultry (감염가금 전처리 및 폐사가축 처리시스템 개발)

  • Hong, J.T.;Kim, H.J.;Yu, B.K.;Lee, S.H.;Hyun, C.S.;Ryu, I.S.;Oh, K.Y.;Kim, S.;Kwon, J.H.;Tack, D.S.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 2011
  • When we bury the infected poultry into the ground, we have many problems such as the difficulty of making sufficient area for burying, environmental contamination by the leachate, unpleasant ordor. Also, in case of burning the carcass of the infected poultry, there are some problems such as high cost, dust, unpleasant odor, etc. It could cause environmental contamination which many peoples and environmental organization complains about. In this study, we develop a treating system which treats the infected poultry carcass in a environmental method preventing the environment contamination. This system is composed of many processes. The euthanasia system uses rigid vinyl to trap and to do a euthanasia the infected poultry with lethal gas, carbon dioxide. And then, with the tractor attached grappler infected poultry carcass could be put into the carcass treating system. The euthanasia system uses rigid vinyl to trap the infected birds and to confine lethal gas, carbon dioxide. Infected poultry carcass are moved to carcass disposal system by collecting device which is attached at tractor. The carcass treatment system (capacity of disposal : 6.3 $m^3$) is installed on a truck and do one pass work, which is input, crush, stir, sterilize, and discharge treated carcass. 1,000 chickens was killed within 9.7min by $CO_2$ (300L/min) in the tent (10 $m^3$). The collecting device could carry 142 chickens at a time, and the movable carcass treatment system could sterilize 2 tons carcass per hour (at one time). This treatment systems was eco-friendly because it reduced the volume of carcass by 31.9% with no wastewater generation.

The Effect of Carbon Dioxide Leaked from Geological Storage Site on Soil Fertility: A Study on Artificial Leakage (지중 저장지로부터 누출된 이산화탄소가 토양 비옥도에 미치는 영향: 인위 누출 연구)

  • Baek, Seung Han;Lee, Sang-Woo;Lee, Woo-Chun;Yun, Seong-Taek;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.409-425
    • /
    • 2021
  • Carbon dioxide has been known to be a typical greenhouse gas causing global warming, and a number of efforts have been proposed to reduce its concentration in the atmosphere. Among them, carbon dioxide capture and storage (CCS) has been taken into great account to accomplish the target reduction of carbon dioxide. In order to commercialize the CCS, its safety should be secured. In particular, if the stored carbon dioxide is leaked in the arable land, serious problems could come up in terms of crop growth. This study was conducted to investigate the effect of carbon dioxide leaked from storage sites on soil fertility. The leakage of carbon dioxide was simulated using the facility of its artificial injection into soils in the laboratory. Several soil chemical properties, such as pH, cation exchange capacity, electrical conductivity, the concentrations of exchangeable cations, nitrogen (N) (total-N, nitrate-N, and ammonia-N), phosphorus (P) (total-P and available-P), sulfur (S) (total-S and available-S), available-boron (B), and the contents of soil organic matter, were monitored as indicators of soil fertility during the period of artificial injection of carbon dioxide. Two kinds of soils, such as non-cultivated and cultivated soils, were compared in the artificial injection tests, and the latter included maize- and soybean-cultivated soils. The non-cultivated soil (NCS) was sandy soil of 42.6% porosity, the maize-cultivated soil (MCS) and soybean-cultivated soil (SCS) were loamy sand having 46.8% and 48.0% of porosities, respectively. The artificial injection facility had six columns: one was for the control without carbon dioxide injection, and the other five columns were used for the injections tests. Total injection periods for NCS and MCS/SCS were 60 and 70 days, respectively, and artificial rainfall events were simulated using one pore volume after the 12-day injection for the NCS and the 14-day injection for the MCS/SCS. After each rainfall event, the soil fertility indicators were measured for soil and leachate solution, and they were compared before and after the injection of carbon dioxide. The results indicate that the residual concentrations of exchangeable cations, total-N, total-P, the content of soil organic matter, and electrical conductivity were not likely to be affected by the injection of carbon dioxide. However, the residual concentrations of nitrate-N, ammonia-N, available-P, available-S, and available-B tended to decrease after the carbon dioxide injection, indicating that soil fertility might be reduced. Meanwhile, soil pH did not seem to be influenced due to the buffering capacity of soils, but it is speculated that a long-term leakage of carbon dioxide might bring about soil acidification.