• Title/Summary/Keyword: layered testbench

Search Result 4, Processing Time 0.032 seconds

Improving Code Coverage for the FPGA Based Nuclear Power Plant Controller (FPGA기반 원전용 제어기 코드커버리지 개선)

  • Heo, Hyung-Suk;Oh, Seungrohk;Kim, Kyuchull
    • Journal of IKEEE
    • /
    • v.18 no.3
    • /
    • pp.305-312
    • /
    • 2014
  • IIt takes a lot of time and needs the workloads to verify the RTL code used in complex system like a nuclear control system which is required high level reliability using simple testbench. UVM has a layered testbench architecture and it is easy to modify the testbench to improve the code coverage. A test vector can be easily constructed in the UVM, since a constrained random test vector can be used even though the construction of testbench using UVM. We showed that the UVM testbench is easier than the verilog testbench for the analysis and improvement of code coverage.

Implementation of a Verification Environment using Layered Testbench (계층화된 테스트벤치를 이용한 검증 환경 구현)

  • Oh, Young-Jin;Song, Gi-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.145-149
    • /
    • 2011
  • Recently, as the design of a system gets larger and more complex, functional verification method based on system-level becomes more important. The verification of a functional block mainly uses BFM(bus functional model). The larger the burden on functional verification is, the more the importance of configuring a proper verification environment increases rapidly. SystemVerilog unifies hardware design languages and verification languages in the form of extensions to the Veri log HDL. The processing of design description, function simulation and verification using same language has many advantages in system development. In this paper, we design DUT that is composed of AMBA bus and function blocks using SystemVerilog and verify the function of DUT in verification environment using layered testbench. Adaptive FIR filter and Booth's multiplier are chosen as function blocks. We confirm that verification environment can be reused through a minor adaptation of interface to verify functions of other DUT.

Design and Implementation of Co-Verification Environments based-on SystemVerilog & SystemC (SystemVerilog와 SystemC 기반의 통합검증환경 설계 및 구현)

  • You, Myoung-Keun;Song, Gi-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.4
    • /
    • pp.274-279
    • /
    • 2009
  • The flow of a universal system-level design methodology consists of system specification, system-level hardware/software partitioning, co-design, co-verification using virtual or physical prototype, and system integration. In this paper, verification environments based-on SystemVerilog and SystemC, one is native-code co-verification environment which makes prompt functional verification possible and another is SystemVerilog layered testbench which makes clock-level verification possible, are implemented. In native-code co-verification, HW and SW parts of SoC are respectively designed with SystemVerilog and SystemC after HW/SW partitioning using SystemC, then the functional interaction between HW and SW parts is carried out as one simulation process. SystemVerilog layered testbench is a verification environment including corner case test of DUT through the randomly generated test-vector. We adopt SystemC to design a component of verification environment which has multiple inheritance, and we combine SystemC design unit with the SystemVerilog layered testbench using SystemVerilog DPI and ModelSim macro. As multiple inheritance is useful for creating class types that combine the properties of two or more class types, the design of verification environment adopting SystemC in this paper can increase the code reusability.

  • PDF

SystemVerilog-based Verification Environment using SystemC Constructs (SystemC 구성요소를 이용한 SystemVerilog 기반 검증환경)

  • Oh, Young-Jin;Song, Gi-Yong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.4
    • /
    • pp.309-314
    • /
    • 2011
  • As a system becomes more complex, a design relies more heavily on a methodology based on high-level abstraction and functional verification. SystemVerilog includes characteristics of hardware design language and verification language in the form of extensions to the Verilog HDL. However, the OOP of System Veri log does not allow multiple inheritance. In this paper, we propose adoption of SystemC to introduce multiple inheritance. After being created, a SystemC unit is combined with a SystemVerilog-based verification environment using SystemVerilog DPI and ModelSim macro. Employing multiple inheritance of SystemC makes a design of a verification environment simple and easy through source code reuse. Moreover, a verification environment including SysemC unit has a benefit of reconfigurability due to OOP.