• Title/Summary/Keyword: layered plate

Search Result 167, Processing Time 0.025 seconds

Approximate analyses of reinforced concrete slabs

  • Vecchio, F.J.;Tata, M.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 1999
  • Procedures are investigated by which nonlinear finite element shell analysis algorithms can be simplified to provide more cost effective approximate analyses of orthogonally-reinforced concrete flat plate structures. Two alternative effective stiffness formulations, and an unbalanced force formulation, are described. These are then implemented into a nonlinear shell analysis algorithm. Nonlinear geometry, three-dimensional layered stress analyses, and other general formulations are bypassed to reduce the computational burden. In application to standard patch test problems, these simplified approximate analysis procedures are shown to provide reasonable accuracy while significantly reducing the computational effort. Corroboration studies using various simple and complex test specimens provide an indication of the relative accuracy of the constitutive models utilized. The studies also point to the limitations of the approximate formulations, and identify situations where one should revert back to full nonlinear shell analyses.

Thermal buckling load optimization of laminated plates with different intermediate line supports

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.207-223
    • /
    • 2012
  • This paper deals with critical thermal buckling load optimization of symmetrically laminated four layered angle-ply plates with one or two different intermediate line supports. The design objective is the maximization of the critical thermal buckling load and a design variable is the fibre orientation in the layers. The first order shear deformation theory and nine-node isoparametric finite element model are used for the finite element solution of the laminates. The modified feasible direction (MFD) method is used for the optimization routine. For this purpose, a program based on FORTRAN is used. Finally, the numerical analysis is carried out to investigate the effects of location of the internal line supports, plate aspect ratios and boundary conditions on the optimal designs and the results are compared.

Approaches of the Computaional Mechanics on the Stress Wave Analysis (응력파동해석에 대한 전산역학적 접근방법)

  • 조윤호;정현규;김승호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.415-429
    • /
    • 2002
  • Various modeling techniques for ultrasonic wave propagation and scattering problems in finite solid media are presented. Elastodynamic boundary value problems in inhomogeneous multi-layered plate-like structures are set up for modal analysis of guided wave propagation and numerically solved to obtain dispersion curves which show propagation characteristics of guided waves. As a powerful modeling tool to overcome such numerical difficulties in wave scattering problems as the geometrical complexity and mode conversion, the Boundary Element Method(BEM) is introduced and is combined with the normal mode expansion technique to develop the hybrid BEM, an efficient technique for modeling multi-mode conversion of guided wave scattering problems.

  • PDF

Damage detection in laminated beams by anti-optimization (반 최적화기법에 의한 적층복합보의 손상추적)

  • 이재홍
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • The present study proposes a detection technique for delaminations in a laminated compoiste structure. the proposed technique optimizes the spatial distribution of harmonic excitation so as to magnify the difference in response between the delaminated and intact structures. The technique is evaluated by numerical simulation of two-layered aluminum beams. Effects of measurement and geometric noises are included in the analysis. A finite element model for a delaminated beam, based on the layer-wise laminated plate theory in conjunction with a step function to simulate ddelaminations, is used.

  • PDF

Preparation of Porous Graphite by Using Template of Co- and Ni-Magadiite (Co, Ni 마가다이트 주형을 이용한 다공성 흑연의 합성)

  • Jeong Soon-Yong
    • Journal of Powder Materials
    • /
    • v.12 no.2 s.49
    • /
    • pp.151-158
    • /
    • 2005
  • Porous graphite was synthesized by removal of template in HF after pyrolysis of pyrolyzed fuel oil (PFO) at $900^{\circ}C$ using the template of Co or Ni intercalated magadiite. Porous graphite had a plate structure like template, and d-spacing value of about 0.7 nm. The extent of crystallization of porous graphite was dependent on the contents of Co or Ni intercalated in interlayer. It can be explained that the metal such as Co and Ni acts as a promotion catalyst for graphite formation. Porous graphite shows the surface area of $328\sim477 m^2/g$.

Test and Numerical Analysis for Penetration Residual Velocity of Bullet Considering Failure Strain Uncertainty of Composite Plates (복합판재의 파단 변형률 불확실성을 고려한 탄 관통 잔류속도에 대한 시험 및 수치해석)

  • Cha, Myungseok;Lee, Minhyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.281-288
    • /
    • 2016
  • The ballistic performance data of composite materials is distributed due to material inhomogeneity. In this paper, the uncertainty in residual velocity is obtained experimentally, and a method of predicting it is established numerically for the high-speed impact of a bullet into laminated composites. First, the failure strain distribution was obtained by conducting a tensile test using 10 specimens. Next, a ballistic impact test was carried out for the impact of a fragment-simulating projectile (FSP) bullet with 4ply ([0/90]s) and 8ply ([0/90/0/90]s) glass fiber reinforced plastic (GFRP) plates. Eighteen shots were made at the same impact velocity and the residual velocities were obtained. Finally, simulations were conducted to predict the residual velocities by using the failure strain distributions that were obtained from the tensile test. For this simulation, two impact velocities were chosen at 411.7m/s (4ply) and 592.5m/s (8ply). The simulation results show that the predicted residual velocities are in close agreement with test results. Additionally, the modeling of a composite plate with layered solid elements requires less calculation time than modeling with solid elements.

Synthesis and Characterization of Layered Copper Hydroxides in Highly Concentrated Solution (고농도 용액에서 Layered Copper Hydroxides의 합성 및 특성)

  • Nam, Dae-Hyean;Choi, Choong-Lyeal;Kim, Kwang-Seop;Seo, Young-Jin;Park, Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.872-879
    • /
    • 2010
  • Layered copper hydroxides [LCHs, $Cu_2(OH)_3{\cdot}NO_3$] has the agricultural potentials as a fungicide because of its high crystallinity, excellent anion exchange capacity, and its regular layered particle size. The study, for the first time, has synthesized LCHs in highly concentrated solution and evaluated its physicochemical properties including the crystallinity and suspension stability. Optimal synthetic condition of LCHs was determined by crystallinity and stability of suspension as follow; 1) concentrations of $Cu(NO_3)_2$ and NaOH solutions were 3.0 M respectively, 2) reaction temperature and solution pH were $25^{\circ}C$ and 6.0, respectively, and 3) aging time after reaction was 2hr. Crystallinity of LCHs enhanced with increase in pH up to 9.0. Whereas, stability of suspension was decrease by increase in crystal size. Especially, increase in reaction temperature decreased stability of suspension. XRD patterns and SEM images exhibited that LCHs had regular layered particle size with 0.2~0.8 ${\mu}m$ and high crystallinity in optimal synthetic condition. The particle size was increased with increase in reaction temperature and pH. These results showed that LCHs synthesized in highly concentrated solution exhibited high stability of suspension as well as high crystallinity suitable to their potential as a fungicide.

Long-term and Short-term AC Treeing Breakdown of Epoxy/Micro-Silica/Nano-Silicate Composite in Needle-Plate Electrodes

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.5
    • /
    • pp.252-255
    • /
    • 2012
  • In order to characterize insulation properties of epoxy/micro-silica/nano-silicate composite (EMNC), long-term and short-term AC treeing tests were carried out undr non-uniform electric field generated between needle-plate electrodes. In a long-term test, a 10 kV (60 Hz) electrical field was applied to the specimen positioned between the electrodes with a distance of 2.7 mm in an insulating oil bath at $30^{\circ}C$, and a typical branch type electrical tree was observed in the neat epoxy resin and breakdown took place at 1,042 min after applying the 10 kVelectrical field. Meanwhile, the spherical tree with the tree length of $237{\mu}m$ was seen in EMNC-65-0.3 at 52,380 min (36.4 day) and then the test was stopped because the tree propagation rate was too low. In the short-term test, an electrial field was applied to a 3.5 mm-thick specimen at an increasing voltage rate of 0.5 kV/s until breakdown in insulating oil bath at $30^{\circ}C$ and $130^{\circ}C$, and the data was estimated by Weibull statistical analysis. The electrical insulation breakdown strength for neat epoxy resin was 1,763 kV/mm at $30^{\circ}C$, while that for EMNC-65-0.3 was 2,604 kV/mm, which was a modified value of 47%. As was expected, the breakdown strength decreased at higher test temperatures.

Free vibration of cross-ply laminated plates based on higher-order shear deformation theory

  • Javed, Saira;Viswanathan, K.K.;Izyan, M.D. Nurul;Aziz, Z.A.;Lee, J.H.
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.473-484
    • /
    • 2018
  • Free vibration of cross-ply laminated plates using a higher-order shear deformation theory is studied. The arbitrary number of layers is oriented in symmetric and anti-symmetric manners. The plate kinematics are based on higher-order shear deformation theory (HSDT) and the vibrational behaviour of multi-layered plates are analysed under simply supported boundary conditions. The differential equations are obtained in terms of displacement and rotational functions by substituting the stress-strain relations and strain-displacement relations in the governing equations and separable method is adopted for these functions to get a set of ordinary differential equations in term of single variable, which are coupled. These displacement and rotational functions are approximated using cubic and quantic splines which results in to the system of algebraic equations with unknown spline coefficients. Incurring the boundary conditions with the algebraic equations, a generalized eigen value problem is obtained. This eigen value problem is solved numerically to find the eigen frequency parameter and associated eigenvectors which are the spline coefficients.The material properties of Kevlar-49/epoxy, Graphite/Epoxy and E-glass epoxy are used to show the parametric effects of the plates aspect ratio, side-to-thickness ratio, stacking sequence, number of lamina and ply orientations on the frequency parameter of the plate. The current results are verified with those results obtained in the previous work and the new results are presented in tables and graphs.

Determination of Phase Velocity Dispersion Curve and Group Velocity of lamb Waves Using Backward Radiation (후방복사를 이용한 램파의 위상속도 분산과 군속도의 측정)

  • 송성진;권성덕;정용무;김영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.61-68
    • /
    • 2003
  • The guided wave has been widely employed to characterize thin plates and layered media. The dispersion curves of phase and group velocities are essential for the quantitative application of guided waves. In the present work, a fully automated system for the measurement of backward radiation of LLW has been developed. The specimen moves in two dimensional plane as well as in angular rotation. The signals of backward radiation of LLW were measured from an elastic plate in which specific modes of Lamb wave were strongly generated. Phase velocity of the corresponding modes was determined from the incident angle. The generated Lamb waves propagated forward and backward with the leakage of energy into water. Backward radiated LLW was detected by the same transducer and its frequency components were analyzed to extract the related information to the dispersion curves. The dispersion curves of phase velocity were measured by varying the incident angle. Moving the specimen in the linear direction of LLW propagation, group velocity was determined by measuring the transit time shift in the ultrasonic waveform.