• 제목/요약/키워드: layered composite material

검색결과 114건 처리시간 0.019초

A Novel Method to Fabricate Tough Cylindrical Ti2AlC/Graphite Layered Composite with Improved Deformation Capacity

  • Li, Aijun;Chen, Lin;Zhou, Yanchun
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.369-374
    • /
    • 2012
  • Based on the structure feature of a tree, a cylindrical $Ti_2AlC$/graphite layered composite has been fabricated through heat treating a graphite column and six close-matched thin wall $Ti_2AlC$ cylinders bonded with the $Ti_2AlC$ powders at $1300^{\circ}C$ and low oxygen partial pressure. SEM examination reveals that the bond interlayers between cylinders or that between cylinder and column are not fully dense without any crack formation. During the compressive test, the strain of the $Ti_2AlC$/graphite layered composite is about twice higher than that of the monolithic $Ti_2AlC$ ceramic, and the compressive strength of the layered composite is 348 MPa. The layered composite show the noncatastrophic fracture behaviors due to the debonding and shelling off of the layers, which are different from the monolithic $Ti_2AlC$ ceramic. The mechanism of the improved deformation capacity and noncatastrophic failure modes are attributed to the presence of the central soft graphite column and cracks deflection by the bond interlayers.

Analysis Method of Transmission Characterization for Multi-layered Composite Material Based on Homogenization Method

  • Hyun, Se-Young;Song, Yong-Ha;Jeoun, Young-Mi;Kim, Bong-Gyu
    • 항공우주시스템공학회지
    • /
    • 제15권6호
    • /
    • pp.59-65
    • /
    • 2021
  • In this paper, the transmission characteristics of the multi-layered composite material with wire mesh and honeycomb core for aircraft applications have been analyzed with the proposed method. The proposed method converts the conductive wire mesh into effective layer, while for the dielectric honeycomb core, effective permittivity has been derived based on volume fraction with the proposed method. The proposed method has been verified through comparison with full-wave simulation and revealed excellent. In addition, the calculation time of the proposed method is a few order of magnitude faster in comparison with the full-wave simulation.

소재-구조 최적화 기반 다층-복합재료구조 충격흡수성능 (Impact Absorption Performance of Multi-layered Composite Structures based on Material-Structure Optimization)

  • 김병조;김태원
    • Composites Research
    • /
    • 제22권3호
    • /
    • pp.66-73
    • /
    • 2009
  • 적층 두께, 면밀도, 질량관성모우멘트는 소재의 구조-역학적 특성을 나타내는 중요한 인자들이다. 본 연구에서는 이와 같은 인자들이 다층-복합재료구조의 내충격 성능에 미치는 영향을 고찰하기 위해 높은 충격자 속도 하에서 탄자한계속도기 최대가 되는 재료-구조 최적화를 수행하였다. 세라믹복합재료, 고무, 알루미늄 그리고 알루미늄 폼으로 구성된 다층-복합재료구조의 최적화를 위해 Florence 모델과 Awerbuch-Bonder 모델을 연계한 통합 모델을 개발하였으며, 구속 조건으로써 적층 두께, 면밀도, 질량관성모우멘트를 함께 사용하였다. 결과에서 알 수 있듯이, 제안된 통합 모델을 통해 계산된 탄자한계속도는 유한표소해석에서의 탄자한계속도와 거의 유사함을 확인하였다. 통합 모델을 바탕으로 재료-구조 최적화를 통해 설정된 다층구조는 최적화를 수행하지 않은 다층구조에 비해 약 10.8%의 탄자한계속도 및 26.7%의 충격흡수에너지 향상이 나타남을 알 수 있다.

The applications and conduct of vibration equations for constrained layered damped plates with impact

  • Luo, G.M.;Lee, Y.J.;Huang, C.H.
    • Steel and Composite Structures
    • /
    • 제8권4호
    • /
    • pp.281-296
    • /
    • 2008
  • Visco-elastic material and thin metals were adhered to plate structures, forming the composite components that are similar to the sandwich plates, called constrained layered damped (CLD) plates. Constrained layer damping has been utilized for years to reduce vibration, and advances in computation and finite element analysis software have enabled various problems to be solved by computer. However, some problems consume much calculation time. The vibration equation for a constrained layered damped plate with simple supports and an impact force is obtained theoretically herein. Then, the results of the vibration equation are compared with those obtained using the finite element method (FEM) software, ABAQUS, to verify the accuracy of the theory. Finally, the 3M constrained layer damper SJ-2052 was attached to plates to form constrained layered damped plates, and the vibration equation was used to elucidate the damping effects and vibration characteristics.

열 및 응력 해석용 3차원 적층 유한요소의 개발 (Development of Three-Dimensional Layered Finite Element for Thermo-Mechanical Analysis)

  • 조성수;하성규
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1785-1795
    • /
    • 2001
  • A multi-layered brick element fur the finite element method is developed for analyzing the three-dim-ensionally layered composite structures subjected to both thermal and mechanical boundary conditions. The element has eight nodes with one degree of freedom for the temperature and three for the display-ements at each node, and can contain arbitrary number of layers with different material properties with-in the element; the conventional element should contain one material within an element. Thus the total number of nodes and elements, which are needed to analyze the multi-layered composite structures, can be tremendously reduced. In solving the global equation, a partitioning technique is used to obtain the temperature and the displacements which are caused by both the mechanical boundary conditions and temperature distributions. The results by using the developed element are compared wish the commercial package, ANSYS and the conventional finite element methods, and they are in good agreement. It is also shown that the Number of nodes and elements can be tremendously reduced using the element without losing the numerical accuracies.

Organic Passivation Material-Polyvinyl Alcohol (PVA)/Layered Silicate Nanocomposite-for Organic Thin Film Transistor

  • Ahn, Taek;Suk, Hye-Jung;Yi, Mi-Hye
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권2호
    • /
    • pp.1539-1542
    • /
    • 2007
  • We have synthesized novel organic passivation materials to protect organic thin film transistors (OTFTs) from $H_2O$ and $O_2$ using polyvinyl alcohol (PVA)/layered silicate (SWN) nano composite system. Up to 3 wt% of layered silicate to PVA, very homogeneous nanocomposite solution was prepared.

  • PDF

Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems

  • She, Gui-Lin;Ren, Yi-Ru;Yuan, Fuh-Gwo
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.641-653
    • /
    • 2019
  • In this paper, wave propagation is studied and analyzed in double-layered nanotubes systems via the nonlocal strain gradient theory. To the author's knowledge, the present paper is the first to investigate the wave propagation characteristics of double-layered porous nanotubes systems. It is generally considered that the material properties of nanotubes are related to the porosity and hygro-thermal effects. The governing equations of the double-layered nanotubes systems are derived by using the Hamilton principle. The dispersion relations and displacement fields of wave propagation in the double nanotubes systems which experience three different types of motion are obtained and discussed. The results show that the phase velocities of the double nanotubes systems depend on porosity, humidity change, temperature change, material composition, non-local parameter, strain gradient parameter, interlayer spring, and wave number.

알루미나/지르코니아 층상 복합체의 미세구조 및 기계적 성질 (Microstructure and Mechanical Properties of Alumina/Zirconia Layered Composites)

  • 유승우;박영민;양태영;류수착;김영우;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제43권3호
    • /
    • pp.193-197
    • /
    • 2006
  • Symmetric three-layer $Al_2O_3/ZrO_2$ composite has been prepared by freeze casting and pressureless sintering at $1400-1600^{\circ}C$ in air. The layered material sintered at $1600^{\circ}C$ showed the maximum fracture strength (410 MPa), measured by a four-point bending test. Contact damage strength was superior in three-layer composite compared with corresponding mono-layered material, possibly due to the development of relatively large compressive stress. The grain growth of $ZrO_2$ particles was mainly governed by coalescence mechanism.

점탄성층을 갖는 비틀린 복합재판의 감쇠해석 (Damping Analysis of Pretwisted Composite Plates with Viscoelastic Layer)

  • 이덕규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.39-44
    • /
    • 2002
  • A three node triangular element with drilling rotations incorporating Improved Layerwise Zig-zag Theory(HZZT) is developed to analyze the vibration of spinning pretwisted composite blades with embedded damping layer. Matching conditions at the interfaces between the damping material and the border material are enforced by setting the shear forces matched and different shear strains along the interfaces. The natural frequencies and modal loss factors of cantilevered pretwisted composite blade with damping core are calculated with the present triangular element enforcing the matching conditions and compared to experimental results and MSC/NASTRAN results using a layered combination of plate and solid elements.

  • PDF

층상 및 섬유상 $Al_2O_3$ 거시복합체의 파괴거동 (Fracture Behavior of $Al_2O_3$ Macro-composites with Layered and Fibrous Structure)

  • 신동우;윤대현;박삼식;김해두
    • 한국세라믹학회지
    • /
    • 제34권7호
    • /
    • pp.758-766
    • /
    • 1997
  • Non-brittle fracture behaviour of the two composite structures made of two different brittle materials was investigated using 3-point bending test. First, the layered and fibrous macro-composites were fabricated using the material easily formed, yet showing a brittle fracture behaviour similar to ceramics. The layered and fibrous Al2O3 /Al2O3 composites with weak interface were also fabricated using plate of 2 mm thickness and rod of 3 mm diameter respectively. Comparison of the mechanical properties between these two structures was performed in the lights of flexural strength and work of fracture for the composites consisting of Al2O3 and simulated materials respectively. The strength ratio of layered structure to the monolith of same volume was 0.6 and the ratio of fibrous one was about 0.2 for the composites made of simulated brittle material. The ratio of the work of fracture of the fibrous to the layered was 0.47. For Al2O3/Al2O3 composites, the strength ratio of layered and fibrous structures to the monolith with same volume were about 0.6 and 0.2 respectively. The ratio of work of fracture of the fibrous to the layered was 0.6. These confirmed that the layered structure was superior to the fibrous one in terms of flexural strength and work of fracture.

  • PDF