• Title/Summary/Keyword: layered architecture

Search Result 259, Processing Time 0.021 seconds

Comparative Study of Deep Learning Algorithm for Detection of Welding Defects in Radiographic Images (방사선 투과 이미지에서의 용접 결함 검출을 위한 딥러닝 알고리즘 비교 연구)

  • Oh, Sang-jin;Yun, Gwang-ho;Lim, Chaeog;Shin, Sung-chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.687-697
    • /
    • 2022
  • An automated system is needed for the effectiveness of non-destructive testing. In order to utilize the radiographic testing data accumulated in the film, the types of welding defects were classified into 9 and the shape of defects were analyzed. Data was preprocessed to use deep learning with high performance in image classification, and a combination of one-stage/two-stage method and convolutional neural networks/Transformer backbone was compared to confirm a model suitable for welding defect detection. The combination of two-stage, which can learn step-by-step, and deep-layered CNN backbone, showed the best performance with mean average precision 0.868.

A Review on IoT: Layered Architecture, Security Issues and Protocols

  • Tooba Rashid;Sumbal Mustafa
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.100-110
    • /
    • 2023
  • The Internet of Things (IoT) is the most creative and focused technology to be employed today. It increases the living conditions of both individuals and society. IoT offers the ability to recognize and incorporate physical devices across the globe through a single network by connecting different devices by using various technologies. As part of IoTs, significant questions are posed about access to computer and user privacy-related personal details. This article demonstrates the three-layer architecture composed of the sensor, routing, and implementation layer, respectively, by highlighting the security risks that can occur in various layers of an IoT architecture. The article also involves countermeasures and a convenient comparative analysis by discussing major attacks spanning from detectors to application. Furthermore, it deals with the basic protocols needed for IoT to establish a reliable connection between objects and items.

Multi-mode Layered LDPC Decoder for IEEE 802.11n (IEEE 802.11n용 다중모드 layered LDPC 복호기)

  • Na, Young-Heon;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.11
    • /
    • pp.18-26
    • /
    • 2011
  • This paper describes a multi-mode LDPC decoder which supports three block lengths(648, 1296, 1944) and four code rates(1/2, 2/3, 3/4, 5/6) of IEEE 802.11n wireless LAN standard. To minimize hardware complexity, it adopts a block-serial (partially parallel) architecture based on the layered decoding scheme. A novel memory reduction technique devised using the min-sum decoding algorithm reduces the size of check-node memory by 47% as compared to conventional method. From fixed-point modeling and Matlab simulations for various bit-widths, decoding performance and optimal hardware parameters such as fixed-point bit-width are analyzed. The designed LDPC decoder is verified by FPGA implementation, and synthesized with a 0.18-${\mu}m$ CMOS cell library. It has 219,100 gates and 45,036 bits RAM, and the estimated throughput is about 164~212 Mbps at 50 MHz@2.5v.

Balanced MVC Architecture for High Efficiency Mobile Applications

  • La, Hyun-Jung;Kim, Soo-Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1421-1444
    • /
    • 2012
  • Mobile devices such as Android devices are emerging as a convenient client computing device with mobility and context-sensing capability. However, the computing power and hardware resource of the devices are limited due to their small form-factor. Consequently, large-scaled applications could not be deployed on these devices. Nonetheless, if the large-scaled applications are deployed and executed on the devices, high performance of the applications cannot be guaranteed. To remedy the limitation in terms of performance, it is inevitable to let some heavy-weight functionality executed on the server side and let a client application invoke the functionality in the server. To realize this kind of mobile applications, we adopt well-defined architecture design principles; being thin-client, being layered with Model-View-Controller (MVC), and being balanced between client side and server side. By adopting the principles, we propose a unique, ideal and practical architecture for mobile applications, called balanced MVC architecture. By considering the principles, key design considerations of realizing balanced MVC architecture lie in functionality partitioning. Hence, we define key criteria of determining the degree of performance. And, we define a method to design a balanced MVC architecture which embodies functionality partitioning for high performance, and a simulation-based evaluation method of balanced MVC architectures.

A Software Architecture for URC Robots using a Context-Aware Workflow and a Service-Oriented Middleware (상황인지 워크플로우와 서비스 지향 미들웨어를 이용한 URC 로봇 소프트웨어 아키텍처)

  • Kwak, Dong-Gyu;Choi, Jong-Sun;Choi, Jae-Young;Yoo, Chae-Woo
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.3
    • /
    • pp.240-250
    • /
    • 2010
  • A URC, which is a Ubiquitous Robot Companion, provides services to users in ubiquitous computing environments and has advantage of simplifying robot's hardware and software by distributing the complicated functionality of robots to other system. In this paper, we propose SOWL, which is a software architecture for URC robots and a mixed word of SOMAR and CAWL. SOWL keeps the advantages of URC and it also has the loosely-coupled characteristics. Moreover it makes it easy to develop of URC robot software. The proposed architecture is composed of 4 layers: device software, robot software, robot application, and end user layer. Developers of the each layer is able to build software suitable for their requirements by combining software modules in the lower layer. SOWL consists of SOMAR and CAWL engine. SOMAR, which is a middleware for the execution of device software and robot software, is based on service-oriented architecture(SOA) for robot software. CAWL engine is a system to process CAWL which is a context-aware workflow language. SOWL is able to provide a layered architecture for the execution of a robot software. It also makes it possible for developers of the each layer to build module-based robot software.

LDPC Decoder Architecture for High-speed UWB System (고속 UWB 시스템의 LDPC 디코더 구조 설계)

  • Choi, Sung-Woo;Lee, Woo-Yong;Chung, Hyun-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.287-294
    • /
    • 2010
  • MB-OFDM UWB system will adopt LDPC codes to enhance the decoding performance with higher data rates. In this paper, we will consider algorithm and architecture of the LDPC codes in MB-OFDM UWB system. To suggest the hardware efficient LDPC decoder architecture, LLR(log-likelihood-ration) calculation algorithms and check node update algorithms are analyzed. And we proposed the architecture of LDPC decoder for the high throughput application of Wimedia UWB. We estimated the feasibility of the proposed architecture by implementation in a FPGA. The implementation results show our architecture attains higher throughput than other result of QC-LDPC case. Using this architecture, we can implement LDPC decoder for high throughput transmission, but it is 0.2dB inferior to the BP algorithm.

A prediction of indoor pollutant concentration using method mass transfer coefficient in multi-layered building materials (복합 건축자재의 물질전달계수를 이용한 실내 오염물질 농도 예측방법)

  • Kim, Chang Nam;Lee, Yun Gyu;Leigh, Seung Bok;Kim, Tae Yeon
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.53-58
    • /
    • 2007
  • In order to predict the indoor air pollutant, the VOCs emission rate is used through small chamber in the design process. However, the small chamber method has limitations as the convective mass transfer coefficient, the most important factor when predicting VOCs contamination of indoor air, is different between the small chamber result and the measured data in the actual building. Furthermore, the existing studies which analyzed mass transfer coefficient in the small chamber were directed on the small chambers developed at the time and FLEC(Field and Laboratory Emission Cell), thus, are different from the current small chamber which has been changed with improvements. The purpose of this study is to determine the emission rate of pollutant in multi-layered building materials, and predict the indoor pollutant concentration through the CFD(Computational of Fluid Dynamics) and CRIAQ2 based on the mass transfer coefficient on singled-layered building material by using the current small chamber widely used in Korea. Futhermore, this study used the new convective mass transfer coefficient(hm') which indicates the existing convective mass transfer coefficient(hm) including VOC partition coefficient(k). Also, formaldehyde was selected as target pollutant.

Numerical Evaluation on Bending Stiffness of Nodal Connection Systems in the Single Layered Grid Considering Bolt Clearance (볼트 유격을 고려한 단층 그리드 노드 접합 시스템의 휨 강성에 대한 구조 해석적 평가)

  • Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.141-147
    • /
    • 2020
  • Single-layered grid space steel roof structure is an architectural system in which the structural ability of the nodal connection system greatly influences the stability of the entire structure. Many bolt connection systems have been suggested to enhance for better construct ability, but the structural behavior and maximum resistance of the connection system according to the size of bolt clearance play were difficult to identify. In particular, the identification of bending stiffness of the connection system is very important due to the characteristics of shell structures in which membrane stresses based on bending force effect significantly. To identify effective structural behavior and maximum bearing force, four representative nodal connection systems were selected and nonlinear numerical analysis were performed. The numerical analysis considering the size of the bolt clearance were performed to investigate structural behavior and maximum values of the bending force. In addition, the type of effective nodal connection system were evaluated. As a result, the connection system, which has two shear plane, represented high bending stiffness.

Research on the Layered Architecture for Electronic Warfare System Software based on Attribute-Driven Design 3.0 (ADD 3.0 기반 전자전 소프트웨어의 계층적 아키텍처 연구)

  • Jeongwoo Lee;Sujin Kim;Jinhyuk Heo;Hyojeong Jang;Jinwoo Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.247-255
    • /
    • 2024
  • Development of electronic warfare(EW) software has become increasingly challenging due to stricter regulations, shorter development cycles, and increased reliability testing. Consequently, software development often proceeds without proper architecture design, which can lead to missing critical quality requirements and potential system redesigns. In this study, we propose using Attribute-Driven Design(ADD) 3.0 to design software architecture specifically tailored for EW systems, enabling a more systematic approach to address quality requirements. The paper presents an overview of EW software and ADD 3.0 methodology, followed by an analysis of the architecture design results using static and dynamic views. The paper concludes by discussing the effectiveness of the proposed architecture design.

Hybrid Shop Floor Control System for Computer Integrated Manufacturing (CIM)

  • Park, Kyung-Hyun;Lee, Seok-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.544-554
    • /
    • 2001
  • A shop floor can be considered as an important level to develop Computer Integrated Manufacturing system (CIMs). However, a shop floor is a dynamic environment where unexpected events continuously occur, and impose changes to the planned activities. To deal with this problem, a shop floor should adopt an appropriate control system that is responsible for the coordination and control of the manufacturing physical flow and information flow. In this paper, a hybrid control system is described with a shop floor activity methodology called Multi-Layered Task Initiation Diagram (MTD). The architecture of the control model contains three levels: i.e., he shop floor controller (SFC), the intelligent agent controller (IAC) and the equipment controller (EC). The methodology behind the development of the control system is an intelligent multi-agent paradigm that enables the shop floor control system to be an independent, an autonomous, and distributed system, and to achieve an adaptability to change of the manufacturing environment.

  • PDF