
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1421
Copyright ⓒ 2012 KSII

this work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST)
(No.2009-0076392). We thank the anonymous reviewers for their constructive feedback which greatly helped us to improve the
quality and presentation of this paper.

http://dx.doi.org/10.3837/tiis.2012.05.0010

Balanced MVC Architecture for
High Efficiency Mobile Applications

Hyun Jung La and Soo Dong Kim1

1 Department of Computer Science
Soongsil University 511 Sangdo-Dong, Dongjak-Ku, Seoul, Korea 156-743

[e-mail: {hjla80, sdkim777}@gmail.com]
*Corresponding author: Soo Dong Kim

Received December 1, 2011; revised January 30, 2012; accepted March 6, 2012;

published May 25, 2012

Abstract

Mobile devices such as Android devices are emerging as a convenient client computing device
with mobility and context-sensing capability. However, the computing power and hardware
resource of the devices are limited due to their small form-factor. Consequently, large-scaled
applications could not be deployed on these devices. Nonetheless, if the large-scaled
applications are deployed and executed on the devices, high performance of the applications
cannot be guaranteed. To remedy the limitation in terms of performance, it is inevitable to let
some heavy-weight functionality executed on the server side and let a client application
invoke the functionality in the server. To realize this kind of mobile applications, we adopt
well-defined architecture design principles; being thin-client, being layered with
Model-View-Controller (MVC), and being balanced between client side and server side. By
adopting the principles, we propose a unique, ideal and practical architecture for mobile
applications, called balanced MVC architecture. By considering the principles, key design
considerations of realizing balanced MVC architecture lie in functionality partitioning. Hence,
we define key criteria of determining the degree of performance. And, we define a method to
design a balanced MVC architecture which embodies functionality partitioning for high
performance, and a simulation-based evaluation method of balanced MVC architectures.

Keywords: MVC Architecture, mobile application, efficiency, design method, evaluation
method

1422 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

1. Introduction

Mobile devices with iOS and Android provide software functionality as well as cell phone
capability. With the advent of more powerful mobile devices, they have been emerged as a
convenient client computing device not just for casual personal computing but also for
enterprise computing. The potential usage of utilizing mobile devices goes beyond
conventional personal computing due to the mobility, networking, and context-sensing
capability.

However, mobile devices have a major drawback of limited resources mainly due to the
small form-factor. Consequently, large-scaled applications consuming a large amount of
resource could not be deployed on the devices. To overcome the limitation and to maximize
benefits of the mobile devices, it is inevitable to run some computation-intensive functionality
on a server side and let mobile clients invoke the functionality [1][2]. More specifically, there
should be architectural guidelines for designing mobile applications with optimal distribution
of functionality and dataset over the client side and the server side. This could potentially
achieve higher QoS than standalone mobile applications.

Model-View-Controller (MVC) is a widely adopted layered architecture pattern for typical
enterprise applications, and it provides a number of benefits. However, all three layers of
MVC could not be allowed to mobile devices for applications with high functional complexity.
Hence, in this paper, we propose an extended version of MVC for mobile applications,
Balanced MVC architecture. The basic notion is to adopt MVC layers on both the client side
and the server side, and to take a number of benefits while remedying the resource constraint
problem of mobile devices. The term balanced in this paper is to partition the functionality and
datasets between two sides by considering design criteria (given in section 4) in the process of
designing mobile application architecture. It does not include the behavior of dynamical
adjusting workloads among processors and data stores, which is a common service provided
by middleware products such as EJB.

Within the balanced MVC, we identify its five patterns of assigning three MVC layers to
the two sides. Each pattern yields different level of quality aspects, especially performance.
Hence, we define key criteria for determining the performance as defined in ISO/IEC 9126 [3],
and the criteria are used to derive the optimal architecture design for target application. In
addition, we define metrics for evaluating mobile application architecture, not the application.

The paper is organized as the following. We first present the balanced MVC architecture
and five more specific patterns of the architecture in section 3. Then, we define key criteria of
determining the performance of mobile applications with balanced MVC in section 4, which
can be used to designing and evaluating the architecture. And, we present a systematic method
to apply the architecture in section 5, and a simulation-based evaluation method to assess
whether the architecture design is fully satisfied with the criteria in section 6. Finally, we
present three case studies; showing how the architecture is applied in practice, showing how
correctly the architecture evaluated, and showing comparison results with other conventional
patterns.

With the proposed architecture and design guidelines, we believe mobile applications with
high complexity can be effectively designed, and yield high performance and low resource
consumption.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1423

2. Related Work

We summarize representative work on partitioning the application functionality, performance
evaluation for mobile application architecture, and methods to design mobile applications.

For partitioning mobile application functionality, Tergujeff’s work proposes
service-oriented architecture (SOA) for lightweight mobile devices through a survey of
enabling technologies, programming interfaces, and supporting devices [4]. Based on the
survey, they present a demonstration architecture mainly based on JSR 172. Natchetoi’s work
presents a lightweight service-based architecture for business applications running on J2ME
enabled devices [5]. They focus on devising design methods that cover important features of
mobile devices; minimizing data transferred to and stored on the device, pro-active data
loading, and security. Ennai’s work presents an architecture of service-oriented framework
that satisfies deploying lightweight service-based applications, adapting services and devices
to user’ contexts, and utilizing an intelligent invocation of services [6]. The architecture
consists of clients, mobileSOA devices layer, virtualized services, and mobile device platform
components. Each component is interoperated with each other to support dynamic service
discovery, context-aware service portioning, and asynchronous service invocation. Kumar and
his colleague address cost benefits of applying cloud computing to mobile devices [7]. They
present a simple equation to calculate the amount of energy saved through computation
offloading. The equation result implies that offloading is beneficial when large amount of
computation is needed with a relatively small amount of communication. Their approach only
considers offloading the whole functionalities to the server side. Hassn et al propose
architecture framework for hosting Web services on a mobile device [8]. Based on the type of
mobile web services, this work defines Backend node based scheme, Intermediate node based
scheme, and Forwarding node based scheme. However, this work does not consider how to
partition complex tasks are partitioned and how to integrate the result of partitioned tasks.
There are several works on considering how to balance loads over the network such as Tran’s
work [9] and Mateo’s work [10].

For performance evaluation for mobile application architectures, Ryan’s work presents a
set of metrics for measuring runtime efficiency of context aware mobile applications [11].
They first identify attributes that can affect runtime efficiency in terms of performance and
resource utilization. Then, they establish hypotheses which show interrelationship between the
attributes and perform experiments to demonstrate those interrelationships. And, they
presented adaptation based methods to maintain a certain level of efficiency by using the
metrics. Their metrics are used in managing context aware mobile applications, rather than in
designing them. Aquilani’s work presents a method to evaluate an expected performance of
software architecture [12]. First, they present a method to define a performance evaluation
model with architecture description. They utilize Queuing Network Model for defining the
evaluation model. With the model, they evaluate performance of the software architecture by
using metrics such as response time and throughput. They focus more on defining the
performance model.

For design of mobile applications, Abrahamsson’s proposes a methodology called
Mobile-D, which is an agile approach to developing mobile applications to cope with technical
constraints of the mobile environment [13]. The approach is based on development practices
borrowed from eXtreme Programming, Crystal methodologies, and RUP. The nine phases and
disciplines of Mobile-D are derived from conventional software development processes and
relevant supporting activities. Rahimian’s presents an approach to develop mobile software
systems using Hybrid Methodology Design [14]. First, they identify unique requirements and

1424 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

constraints associated with mobile systems. Based on these requirements, they define a
nine-phase methodology. In addition, there are several works to propose a set of instructions
for developing mobile applications by considering specific aspects. Häkkilä’s work [15]
focuses on proposing ten design guidelines for context-awareness aspect of mobile
applications. Sá’s work [16] presents design methods to gather context information, to develop
prototype for evaluation, and to evaluate mobile applications. Ayob’s work [17] presents a set
of design guidelines to design user interfaces for mobile applications. Although these works
present a design process covering a whole life-cycle, they do not consider designing mobile
applications with important quality aspects such as high efficiency.

In summary, the works mainly focus on applying the service-based architecture to mobile
applications and addressing the issues in designing the architecture with high-level
instructional descriptions, which only covers overall architecture for the server side. And,
evaluation methods tend to less focus on mobile application itself. Our work is to focus more
specifically on designing and evaluating mobile applications with thin-client MVC.

3. Balanced MVC Architecture

As earlier discussed, to enable to execute functionalities of large-scaled applications with
mobile applications, it is better to locate functionalities with higher complexity on the server
system and let mobile application invoke the functionalities through the network. For this type
of mobile applications, we define a new architecture, Balanced MVC Architecture, which is an
extended MVC architecture [18][19] where client and server systems embody its own separate
layers so that the degree of overall performance can be maximized with limited resources.

3.1 Key Elements and Their Relationships

In the mobile application architecture, client and server systems embody its own separate
layers. Fig. 1 shows key elements and their interrelationships of the mobile application
architectures. There are two components in the client application. C.View is the layer
providing user interface for mobile users, and C.Control carries out business process logics for
the client application. All the functionality exposed to the users should be defined in C.Control,
which invokes methods of classes in C.Model. C.Model contains entity-type classes which
manage data for a specific mobile user and tend to be temporarily stored.

For the server system, there are two components. S.Control runs business process logics
that invoke public methods of S.Model and can be reused by multiple mobile users. S.Model
contains entity-type classes which manage persistent data for all the mobile users. Note that
there is no view layer in the server system since the server system plays a role of providing
functionality to the client system only interacting with the client system.

1

2

4

3
5

C.View

C.Control

C.Model

S.Control

S.Model

Client Application
on Mobile Device Server System

C.DB S.DB

User

Fig. 1. Elements and interaction paths in mobile application architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1425

There are five interaction paths in the architectures. Path 1 is an interaction between C.Control
and C.Model, not requiring any communications with server system. This is applicable to
functionality which is invoked on the client system without relying on the server system. Path
5 is much similar to Path 1 only except for the interaction parties.

Path 2 is an interaction between C.Control and S.Control. This is applicable to the case that
the functionality of C.Control is fulfilled with the support of the S.Control. Path 3 is a direct
interaction between C.Control and S.Model, without going through S.Control. This is
applicable to the case that the C.Control needs to update the objects in S.Model efficiently so
that network overhead is reduced. Path 4 is an interaction between C.Model and S.Model. This
is useful to synchronize the states of two corresponding objects to maintain the state
consistency.

3.2 Patterns of Balanced MVC Architecture

One of the challenging tasks in applying this mobile application architecture lies on the
decision about where the functionality of business processes (i.e. control layer) should be
allocated. We can consider three cases; business processes allocated to C.Control, allocated to
S.Control, and balanced between C.Control and S.Control. And, another important decision is
whether C.Model is needed. By considering all the concerns, we figure out the five
architectural patterns for mobile applications, as shown in Fig. 2.

C.View S.Control S.Model Patten 1

Server SystemClient Application

Network

C.View C.Control S.Model Patten 2Network

C.View C.Control S.Model Patten 3Network S.Control

C.View C.Control S.Model Patten 4Network

C.Model

C.View C.Control S.Model Patten 5Network S.Control

C.Model

Fig. 2. Options for load balancing with balanced MVC architecture

In Pattern 1, there is only S.Control which implies all the business processes are executed on
the provider side. This will fully satisfy the criterion of being thin on the client side. However,
every interaction with users will have to go through the network.

In Pattern 2, there is only C.Control which implies all the business processes are run on the
client side. Compared with Pattern 1, much larger amount of resource consumption is required
in the client side. However, this pattern would be ideal for situations where the user interaction
is intensive, and the interaction between C.Control and S.Model is relatively lower.

In Pattern 3, there are both C.Control and S.Control, which implies business processes are
partitioned to both sides. If there are a large number of interactions between C.Control and
S.Model in Pattern 2, this pattern would be well applicable because the number of interactions
is minimized by putting S.Control which interacts with S.Model. We expect to have a high
parallelism on C.Control and S.Control.

In Pattern 4, there are C.Control and C.Model. This configuration would be well
applicable to situations where C.Control has intensive interaction with some parts of S.Model

1426 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

so that the parts are replicated to C.Model, and it is expected to have a high parallelism
between two model groups.

In Pattern 5, there are both C.Control and S.Control, and also C.Model. This configuration
would be selected in situations where there exists a high coupling/dependency between each
pair of Control and Model.

4. Key Criteria for Designing Balanced MVC Architecture

In this section, we derive key criteria that play important roles in designing architecture for
mobile applications. We consider performance as a first-citizen quality attribute since limited
resources of mobile devices severely affects overall performance of mobile applications. In
this paper, we consider performance as efficiency defined in ISO/IEC 9126 [3], which is
defined as the capability of the software product to provide appropriate performance, relative
to the amount of resources used, under stated conditions. By adopting the definition of
efficiency in ISO/IEC 9126, we consider two sub-quality aspects for evaluating performance,
time behavior and resource utilization.

4.1 Time Behavior

Due to functionality partitioning of balanced MVC mobile applications, it is inevitable to incur
additional costs such as network cost. Correspondingly, the costs result in decreasing overall
performance. Hence, mobile applications with balanced MVC architecture should be
efficiently designed to incur as fewer amounts of additional costs as possible. That is why we
drive time behavior as the first criterion.

We now define three key factors which have high impacts on the overall value of
time-related cost of balanced MVC mobile applications as shown in Fig. 3.

Client
Application

Server
Application or

Service

Request invocation

Return result

Computation Time for
Client Application

Computation Time for
Server Application / Service

Network Time

Fig. 3. Key Factors for Time Behavior

Factor 1. Computation Time (for Client Application and Server Application) : This is the
cost spent in executing functionality on either client application or server system. To achieve
high efficiency, it is natural to minimize a cost to compute functionality. That is, the
performance is directly related to a complexity of the executed functionality which controls a
set of data. Hence, the performance is affected by the following factors;
 The functionality complexity (F): A main cause to increase computation cost lies in the

complexity of the functionality. If mobile applications execute extremely complex
computation, they spent a lot of time because they have a low speed of CPU clock. More
specifically, this factor depends on the number of input parameters manipulated
(Size(InParam(F)) and the number of operations performing the functionality
(NumOp(F)) [20][21].

 The size of data required by a mobile application (Size(D))
 The complexity of managing the data: In addition to the size of data manipulated itself,

the complexity of managing the data also affects the computation. This complexity is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1427

determined by complexity of data query (Complexity (QueryOp((D)) and the number of
access the database (Freq(QueryOp(D))

Let Cost_to_Compute(F, D) be the computation cost of the functionality F to manipulate
the required dataset D. This cost is evaluated with a following equation;

Cost_to_Compute (F,D) ∝(Cost_to_Compute_with_DB(Fi, D)
+ Cost_to_Compute_without_DB(Fj)) / (ClockSpeed) .

(1)

F is classified with two kinds of functionality; Fi working with DB and Fj working without
DB. Hence, Cost_to_Compute is proportional to a sum of computation cost with accessing DB
(i.e. Cost_to_Compute_with_DB), computation cost without accessing DB (i.e.
Cost_to_Compute_without_DB), and inversely proportional to the clock speed. And,
Cost_to_Compute_with_DB and Cost_to_Compute_without_DB are evaluated by considering
the mentioned factors as following;

Cost_to_Compute_without_DB(Fj) ∝ Size(InParam(Fj)) * NumOp (Fj) . (2)

Cost_to_Compute_with_DB(Fi, D) ∝ Size(InParam(Fj)) * NumOp (Fj)* Size(D)
* Complexity(QueryOp(D)) * Freq(QueryOp(D)) .

(3)

In the balanced MVC architecture, we need to consider functionality cost on client side and
functionality cost on services.
 Cost_to_Compute(Fclient, Dclient) for client side
 Cost_to_Compute(Fserver, Dserver) for provider side

According to [7] and [22]’s explanation on offloading, we can verify potential benefits of
balanced MVC mobile applications since clock speed of a server system is much faster than
one of a mobile application.

Cost_to_Compute (Fclient, Dclient) + Cost_to_Compute(Fserver, Dserver)
≤ Cost_to_Compute (Fclient,Dclient).

(4)

Factor 2. Network Time: This is the cost consumed in sending invocations and receiving
results between client and server parts. When Fclient invokes functionalities denoted by Fprovider,
a set of input parameter may be passed with the invocation and a result is returned over the
network which has its own bandwidth. At this time, the network overhead is affected by the
following factors;
 Network bandwidth mainly determined by geographical configuration: There are diverse

kinds of network configuration (NetConf) such as Wi-Fi and GSM, etc. The networks
have their own bandwidth, which is represented with Bandwidth (NetConf).

 Size of dataset flown over the network: The larger amount of dataset requires more time
to transmit the dataset. Let Size(D) be a size of the dataset transmitted over the network.
Hence, it is essential to design the client application and services in a way that Size(D) is
minimized.

 Number of messages exchanged over the network: To carry out a business process, a
number of methods and services can typically be invoked. Let NumOfMsg(D) be the
number of messages between a mobile system and a service provider. Hence, it is
desirable to design the workflow in a way that NumOfMsg(D) is minimized.

Let Cost_to_Communicate(D, NetConf) be the network communication cost of delivering
data, D, while Fclient invokes Fserver over the network configuration NetConf. Hence, the value
of Cost_to_Communicate(D, NetConf) is determined;

1428 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

Cost_to_Communicate (D, NetConf) ∝
Size(D) * NumOfMsg(D)* 1/Bandwidth(NetConf).

(5)

Due to the partitioning in balanced MVC architecture, there exist subsidiary considerations
that can affect time efficiency as shown in Fig. 4.

Partitioning DB

Partitioning
Functionality

Data Synchronization
Cost

Parallel Processing
Gain

«implies»

«implies»

<Two Types of Partitioning> <Auxiliary Considerations>

Fig. 4. Subsidiary Factors for Time Behavior

Factor 3. Data Synchronization Cost: According to five options of balanced MVC
architecture, a portion of the data is replicated to the client side to reduce the number of
invocation through the network. Due to the replicated data, Dduplicated, there is a high risk to
violate data integrity. Hence, the amount of performance loss to synchronize data of both sides
is affected by the following factors;
 Complexity of synchronization mechanism (Fsyn): The task of synchronizing states of the

replicated data is performed either in the foreground or in the background. To do this,
most of the synchronization tasks require thread mechanisms which require additional
functionality complexity.

 Number of messages exchanged over the network: Different synchronization
mechanisms utilize different communication patterns such as pulling, pushing, or
observer pattern. These different patterns affect the number of message passings between
client and server sides, NumOfMsg(Dduplicated).

 Size of duplicated data: A larger size of the data indicates there are many statues to
maintain data integrity. Hence, the size of the replicated data (i.e. Size(Dduplicated)) affects
the cost of synchronizing data.

 Frequency of data synchronization: Some applications specify that all the data should be
synchronized whenever data are modified, and others require that data are synchronized
periodically. These different requirements can affect the frequency of data
synchronization, SyncFreq(Dduplicated), which finally results in different response time.

Let Cost_to_Synchronize (Dduplicated) be the additional cost to maintain synchronization of
data, Dduplicated. This equation is much similar to Cost_to_Communicate (D, NetConf) since
these two equations deal with additional cost to transfer data over the network, except for
SyncFreq(Dduplicated). Hence, the value of Cost_to_Synchronize (Dduplicated) is determined;

Cost_to_Synchronize(Dduplicated) ∝
 Cost_to_Compute(Fsyn)* NumOfMsg(Dduplicated) * Size(Dduplicated)

* 1/Bandwidth(NetConf) * SyncFreq(Dduplicated).

(6)

This cost is only required when the requirement specifies that the duplicated data should be
synchronized right after data are modified, which corresponds to patterns #4 and #5.

Factor #4. Parallel Processing Gain: Due to the intrinsic characteristics of balanced
MVC mobile applications, there is a good potential of running functionality in parallel. This
could lead the overall performance gain. However, to make functionalities preform in parallel,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1429

supporting mechanism such as thread manipulation is required. Moreover, some data needs to
be transferred.

Let Cost_to_Parallism (ParF,ParD) be the cost for executing a certain functionality F in
parallel. Here ParF is a functionality performed in parallel and a part of Fclient and Fserver in the
equation (1). Hence, Cost_to_Parallism (ParF,ParD) is determined;

Cost_to_Parallism (ParF,ParD) ∝
(Cost_to_Thread() + Cost_to_Communicate (ParD, NetConf)

- Min (Cost_to_Compute (ParFprovider,ParDprovider),
Cost_to_Compute(ParFclient, ParDclient)))

(7)

Note that the minimum value between Cost_to_Compute (Fprovider,Dprovider) and
Cost_to_Compute(Fclient, Dclient) is substracted since the two computation costs are already
considered in equation (1) and the mininum value is not needed to the total time behavior.

By considering all these time behavior effects of balanced MVC architecture, we can
calculate the total value of time behavior for a given balanced MVC mobile application as
followings;

TotalTimeBehavior
= Cost_to_Compute(Fclient, Dclient) + Cost_to_Compute(Fprovider, Dprovider)

+ Cost_to_Communicate (D, NetConf) + Cost_to_Synchornize (Dduplicated)
 - Cost_to_Parallelism (ParF,ParD).

(8)

Hence, it is desirable to design balanced-MVC mobile application which reveals the lower
network communication overhead, the lower object synchronization overhead, and the higher
parallelism. Hence, as TotalTimeBehavior has a lower value, we can get a better design of
balanced MVC architecture.

4.2 Resource Utilization

It is natural that users only use their mobile devices for a very limited time if they run
large-scaled mobile applications on mobile devices. For example, when your mobile devices
use GPS sensors for a long time, you can easily notice that the battery is quickly drained.
Hence, we drive resource utilization as the second criterion. Although ISO/IEC defines
external and internal metrics for resource utilization, they are genetically defined without
considering unique characteristics of mobile applications. We now define two factors which
have a tremendous impact on the resource utilization.
Factor 1. Memory Consumption: The drain of memory results in executing functionalities
slowly, even mobile application can suddenly stop. Hence, the amount of memory
consumption affects overall efficiency of mobile applications. Through our experiences where
we face memory drain problems in developing mobile applications, we identify that the
following two factors affect the degree of memory consumption.
 Size of data in the memory Size(Dmemory): Typically, datatype with larger size occupy larger

memory space.
 Size of instances in the memory (Size(Instancememroy)): Similarly, a fact that there are many

instances in the memory indicates that the memory is occupied by the instances. This value
is determined by the number of instances and the size of each instance. Here, each size of
the instance is affected by the complexity of the application.
With these factors, we can evaluate that the degree of memory consumption, Memory (), as

following;

1430 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

Memory () ∝ (MemAllocation (Size(Dmemory)) + (MemAllocation(Size(Instancememory)))
* 1/ total memory capacity

(9)

This value depends on the total capacity of the memory allocation, MemAllocation().
Factor 2. Battery Consumption: Among resources of mobile devices, a battery is the most
sensitive resource to using mobile applications. It means that without the battery, we cannot
use any mobile application, and the degree of battery consumption can determine the use of
mobile application. Through our experiences, we conclude that the following three factors
affect the degree of battery consumption.
 The functionality complexity of a mobile application (F): It is natural that running

applications with high functional complexity consumes too much battery.
 The size of data required by a mobile application (D): When application manipulates

dataset by accessing DB, it consumes resources. The consumption depends on the amount
of dataset.

 The frequency of using network: Network communication requires some energy which is
provided by the battery. Hence, the more frequently data are flown over the network, the
more quickly the battery is drained.

 The frequency of using sensors (Freq(Sensori)): Similar to the network, the usage of sensor
also requires consuming the battery. Since each sensor, such as GPS and proximity sensor,
consumes different amount of battery, we need to consider the summation of (Freq(Sensori)
for all types of sensors.
With these factors, we can evaluate the degree of battery consumption, Battery(), as

following;

Battry () ∝ BatteryConsumption (F) * BatteryConsumption (F,D)

* BatteryConsumption (D, NetConf) * BatteryConsumption (∑)
* 1/total battery capacity

(10)

Like Memory (), the value of Battery () also depends on the total capacity of the battery
consumption, BatteryConsjumption(). And, since the degree of battery consumption is
related to Cost_to_Compute (F,D) and Cost_to_Compute(F), a design with low values of them
can lead to a low value of the degree of battery consumption.

By considering all these resource utilization effects of balanced MVC architecture, we can
calculate the total value of resource consumption for a given balanced MVC mobile
application as followings;

TotalResourceConsumption ∝ (Memory () + Battery (). (11)

Hence, it is desirable to design balanced-MVC mobile application which reveals the lower
amount of memory consumption and lower amount of battery consumption. Hence, as
TotalResourceConsumption has a lower value, we can get a better design of balanced MVC
architecture.

5. Instructions for Applying Balanced MVC Architecture

Although balanced MVC architecture is devised for accommodating highly complex
applications on mobile devices, there is a performance penalty due to functionality partitioning.
Hence, we should design a right form of balanced MVC architecture which maximizes its
strong point and minimizes the performance overhead in terms of time behavior and resource
utilization. Fig. 5 illustrates the relationships between two types of efficiency factors and the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1431

overall quality of architectures. An x-axis indicates the amount of thge resource consumption
which is returned from the equation (8), and a y-axis indicates the length of response time
which is acquired from the equation (11).

Resource Utilization
Cost

Total Behavior Cost

Low
↓

↑
High

← Low High →

Poor
Balanced MVC

Design

Trade‐off
Needed

Trade‐off
Needed

Good
Balanced

MVC Design

Fig. 5. Criteria for balanced MVC architecture design

The designed balanced MVC architecture is acceptable when x-axis and y-axis have lower
values. These are the key design principles for balanced MVC architecture, which is also
utilized in evaluating the architecture.

5.1 Process to Design Balanced MVC Architecture

In this section, we devise a method to design the most appropriate balanced MVC architecture
for the target mobile application.

Designing a balanced MVC architecture begins with three input artifacts 오류! 참조
원본을 찾을 수 없습니다.; requirement specification for the target mobile application, use
case model, and object model. By using these artifacts, we suggest the following three-step
process by considering characteristics of five patterns;
 Determine whether client application manages its own DB or not.
 Determine whether classes in control layer need to be partitioned to both sides or not.
 Refine the architecture by reconsidering time behavior and resource utilization.

Step 1: We clarify whether there is a need that for client applications to maintain their own
database. That is, the need of C.DB and also C.Model is determined. This decision is made by
considering requirement specification.

After this decision, C.Model and S.Model, which correspond to C.DB and S.DB, need to be
shaped. At this time, we utilize the previous artifacts such as use case model and object model.
Classes in the class diagram mostly manage the behavior and data of the target application,
which is a key input for this step. All the classes for the server side derive classes in S.Model,
which results in shaping dataset in S.DB. And, we also apply the following guideline to derive
S.Model.

G1. Place dataset on the server side (i.e. S.DB) if the amount of data manipulated is too
large for client application to handle. Due to resource limitation on mobile devices, they
cannot hold large amount of dataset. Hence, the dataset is managed in server side, S.DB.

However, classes in C.Model should be derived by considering time behavior and resource
utilization since mobile devices cannot hold the large amount of dataset like S.DB. For this, we
apply the following guideline.

G2. Place the minimum set of dataset on the client side (i.e. C.DB) by considering
dependency on functionality and security and privacy issues. If there is the most frequently
used functionality by users, dataset relevant to this functionality needs to be placed to C.DB.
And also, privacy-sensitive dataset should be maintained in the client side.

G3. By considering the size of duplicated data, readjust the location of C.DB. This
guideline is related to Size(Dduplicated). The larger amount of data C.DB is managed, the larger

1432 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

amount of cost data synchronization requires. That is, if we reduce the value of Size(Dduplicated),
the overhead cost can be minimized.

Step 2: The most important decision is to design classes in the C.Control and S.Control
since this decision affects overall efficiency severely. That is why most of the control classes
perform business processes which can yield larger amount of network cost by interacting with
more than one model classes. Hence, we define classes in C.Control and S.Control by
considering time behavior and resource utilization.

Both quality criteria are influenced by a same set of factors including complexity of the
functionality (F), the size of dataset (D), the size of dataset flown over the network, the number
of messages exchanged over the network, and others. By considering all these factors, we
define the following guidelines to derive control classes.

G4. If the number of message flows over the network is intensive, consider placing the
related functionalities on one side. This guideline concerns NumOfMsg(D) and affects
Cost_to_Communicate () and Battery (). Hence, to reduce them, control classes and relevant
model classes should be in the one side.

G5. Choose the appropriate synchronization mechanism which will be located in
C.Control and S.Control. Duplicating part of S.DB to C.DB requires data synchronization. As
shown in equation (4), well-designed synchronization mechanism can reduce the amount of
synchronized data, the frequency of data synchronization, and the complexity of the
synchronization method.

With the guideline G4 and G5, the most appropriate pattern is decided. After that, we
should extract the right classes for C.Control and S.Control. Since a main role of control
classes is to mediate interactions among multiple model classes, it is recommended that a
control class performs a set of similar business processes. Hence, our method is based on
functionality grouping, which may be reflected in use case model. These are commonly
applied criteria to grouping functionalities;
 Sub-system (Functionality): Different controllers manage different types of functionalities.
 Access Authority: According to the types of users (s.a. manager and member), they have

different authority to invoke functionality.
 Location (Zone): According to the locations, users may have limitation on invoking certain

functionality. For example, some are not accessible outside their workplace.
We figure out functionality groups by examining use case model. Then, we refine the

functional groups by considering efficiency or functionality similarity. And, we define control
classes in a way that a control class is derived from a refined functionality group. At this time,
by checking what classes are located in client and server sides, classes in C.Cotrol and
S.Control are extracted by following guidelnes.

G6. Locate functionality with high complexity on server side. This guideline is related to
reducing all the metrics in (6), (7), and (8). Running functionality with high complexity tends
to spend a large amount of time and consume high resources of CPU and Memory.

G7. Locate functionality with a large amount of data manipulation on server side. This
guideline concerns Size(D) and affects all the metrics in (6), (7), and (8). Hence, to reduce the
values in these metrics, such functionality is located on the S.Control.

By performing Step 1 and Step 2, mobile application architecture with the appropriate
pattern is designed. Fig. 6 shows an overall process to integrate the two steps and applicable
guidelines.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1433

The process begins with checking whether there is a separate object model for client system. If
there is no the separate object model, one of the Pattern 1, Pattern 2, and Pattern 3 can be
chosen. Otherwise, either Pattern 4 or Pattern 5 is chosen for the target application.

Classes in
Client
Side?

Calculate
Depends(C, S.Model)

no

High?

Apply Pattern 1
Calculate

Depends(C, S.Model)

yes

High?

Apply Pattern 2 Apply Pattern 3

Calculate
Depends(C.View, C)

High?

Apply Pattern 4 Apply Pattern 5

no yes

no yes

no yes

Step 1

Step 2

G1, G2, G3

G4, G5 G4, G5

G4, G5

G6, G7

G6, G7G6, G7

Fig. 6. Process to Apply Architectural Patterns

Once applicable patterns are chosen, we should decide whether control layer C is partitioned
to both sides or not by considering the degree of dependency among components. The
dependency is represented with a function Depends(A, B) that returns the estimated degree of
dependency between A and B and the range of the value is between 0 and 1. Depends() is
acquired by considering Size(D), NumOfMsg(D), and other communication related factors.
That is, Depends () is quite relevant to Cost_to_Communicate(D, NetConf),
Cost_to_Synchronize (Dduplicated), and Battery (). For the patterns #1, #3, and #5, we decide
functionalities with high complexity are located to S.Control to reduce values of
Cost_to_Compute () and Memory ().

Step 3: In the previous steps, we applied appropriate patterns to the target mobile
application without considering Cost_to_Parallelism (). This step is to refine the architecture
by reconsidering time behavior and resource utilization in order to define the most optimal
architecture to the application.

G8. Place functionalities that can be processed in parallel on both client and server sides,
i.e. C.Control and S.Control. This guideline is related to Cost_to_Parallelism(). We can get
performance gain by applying parallel processing mechanisms. Hence, among the classes in
C.Control and S.Control, we define what classes can be executed in parallel.

G9. By considering the complexity of thread handling mechanism and degree of parallel
processing, readjust the functionality partitioning. This guideline is related to
Cost_to_Parallelism()Thread handling mechanism is essentially required for parallel
processing, but could increase functional complexity. If the overhead is too high to hamper the
benefits of parallelism, we examine the initial design on functionality distribution.

5.2 Evaluating Balanced MVC Architecture

Since software architectures are highly conceptual artifacts, there is no way of running and
monitoring their quality. On the other hand, we wish to evaluate the designed the architecture
before realizing the architecture into its implementation. Hence, we propose a four-step
scenario-based 오류! 참조 원본을 찾을 수 없습니다. and simulation-based evaluation
method. There are two underlying reasons for our approach.

1434 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

 Due to complex runtime environment of mobile applications, it is challenging to evaluate
those mobile applications before actual implantation. Hence, we adopt simulation-based
evaluation to quantitatively assess architecture.

 To simulate the mobile applications, it is necessary to determine baseline values of each
operand in the metrics. Without actually running the mobile applications, it is somewhat
hard to predict them. To help it, we adopt scenario-based evaluation.

Our method is to evaluate the architecture in terms of two key criteria defined in section 4;
time behavior and resource utilization.

Step 1 is to define key scenarios from use case model by adopting scenario-based approach.
The purpose of this step is to understand the target application to be evaluated in terms of all
the functionalities and their sequences.

Step 2 is to determine the values of terms used in the metrics used in section 4, which is
used for simulation. The ultimate purpose of the evaluation is to acquire an expected total cost,
TotalTimeBehavior in equation (8) and TotalResourceConsumption in equation (11) by
considering all the scenarios. First, drawing from the scenarios, we need to acquire values of
the terms in metric as shown in Table 1.

Table 1. Acquiring Values of Terms used in Metrics

Sub-Equation Variables How to Acquire Values of Terms in Metrics

Cost_to_Compute_without
_DB (F)

Size(InParam(F)) A proportional number by comparing the size of
input parameters such as primitive and abstract
types

NumOp (F) An actual number of operations for performing the
functionality, which is described in the scenarios

Cost_to_Compute_with_
DB (F, D)

Size(D) A proportional number by comparing actual size of
data such as primitive and abstract data types

Complexity
(QueryOp(D)

A proportional number by comparing types of
queries. Typically, a search query is more expensive
than the other queries.

Freq(QueryOp(D)) The number of invoking queires in the scenarios

Cost_to_Communicate
(D, NetConf)

Bandwidth
(NetConf)

A proportional number by comparing actual
bandwidth for the given bandwidth

Size(D) A proportional number by comparing actual size of
data such as primitive and abstract data types

NumOfMsg(D) An actual number of data exchanges described in
the scenarios

Cost_to_Synchronize (D) Same as Cost_to_Communicate (D, NetConf)

Cost_to_Parallelism (F,D) Same as Cost_to_Compute_with_DB(F, D)

Similarly, in equation (11), there are two variables; Memory() and Battery(), which are
determined by equation (9) and equation (10) respectively. For evaluation equation (9),
Size(Dmemory) is expected by adding actual sizes of all Dmemory whether Dmemory is primitive or
abstract data type. Size(Instancememory) is also expected by considering all class in memory at
the same time, which adds results of multiplying the possible number of Instancememory and the
size of Instancememor for all Instancememory. For evaluation equation (10), Freq(Sensori) is
expected by calculating the number of using sensors in one use case.

It is challenging to evaluate the resulting architecture on runtime environment. That is why
the data capability of devices and network situation such as bandwidth are continuously

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1435

evolving, and those environment parameters are not known. Hence, these dynamic aspects
should be tested with architecture simulation tools, which can take sets of environmental
parameters generated with probability-based random generators such as Poisson Distributor,
as shown below. That is, the resulting architecture can be simulated and tested with different
sets of values for the terms used in equations (1) through (11).

Step 3 is to measure the total costs of a target mobile application with balanced MVC
architecture, with a number of different value sets for different design options and patterns.
For the designed balanced MVC architecture, we perform at least five simulations since there
are five applicable patterns. One simulation is for the architecture with the determined pattern,
and the others are for the rest of patterns which are not chosen.

Step 4 is to compare the total costs of multiple simulations and to re-design the architecture
if the expectation is not fulfilled through the evaluation. Drawing from the simulations, we
compare the results and check whether TotalTimeBehavior and TotalResourceConsumption
are the lowest value among the five patterns.

6. Case Studies

6.1 Case Study of Applying Balanced MVC

We have applied the proposed balanced MVC in developing a commercial Android
application, Mobile Mate Service (MMS), which provides a location-based social networking
service. With this case study, we show how the proposed architecture can be applied in
practice, and discuss key benefits resulted from the architecture.

6.1.1 Functionality

MMS provides four groups of functionality; Profile Management is to manage users’ profile
such as privacy setting and hobby, Membership Management is to manage membership
information, Group Management is to manage registered members with groups, and Location
Service is to display locations of members and to compute the expected travel time.

A typical operation scenario with MMS is for a user to register the membership, to invite
colleagues into groups maintained by the user, and to accept invitations for joining groups, and
to observe the locations of colleagues with Google Map and estimated travel time to
destinations, as shown in Fig. 7.

Colleagues’
Locations

<My Location>

Fig. 7. Locations of Colleagues and current User are displayed

1436 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

6.1.2 Architecture

There are a number of challenging functional and extra-functional requirement items with
MMS. One of them is to handle long-lasting transaction among members when a member
invites another member of mobile device is momentarily turned off. To meet the challenges,
we rely on the architecture design.

Our use case model for MMS includes 24 use cases, and many of them require both
client-side and server-side functionalities. By applying the typical architecture design process
such as [18], balanced MVC was adopted as the most optimal scheme. Among the five
patterns of balanced MVC as presented in section 3.2, the pattern #5 was adopted to handle the
high dependency between C.Control and S.Model. The resulting functional view of the
architecture is shown in Fig. 8.

View Layer

Member
Form

ProfileForm

GroupForm
Invitation
Form

TextMessage
Form

LoginForm HelpForm

Client Control Layer

cMemberCtrl cGroupCtrl cMiscellCtrl

Client Model Layer

MemberSub Profile ColleagueList

Colleague Group

Server Control Layer

sMemberCtrl sGroupCtrl sMiscellCtrl

Server Model Layer

Member Profile ColleagueList

Colleague Group Invitation TextMessage

Fig. 8. Functional View of MMS Architecture with Pattern #5

There are five layers in the resulting functional view, and pattern #5 specifies four interaction
paths as shown in the figure. The interaction paths are consistently reflected in our sequence
diagrams as show in Fig. 9. As shown, objects on client sides are interacting with objects on
server side according to the paths allowed in the pattern 5.

Member

«control»
C1:ClientCtrl

«control»
C2:ClientCtrl

C.Group
«control»
:ProvideCtrl

:S.Profile S.Group S.Colleague
MapServic

displayMyGroupsList(): Vector<Group>

getMyGroups(memberID: String): Vector<Group>

displayCurrentLocation(groupID: String): void
requestGroupInfo(groupID: String): Vector<LocationObject>

getGolleaguesFromGroup(groupID: String): Vector<Colleagues>

getMemberID(colleagueID: String): String

getShowLocation(memberID: String): boolean

using GPS
requestsMembersCurrentLocation(memberID: String): GeoPoint

Loop sizeOfColleagues

S.Location
Object

CreateLocationObject(colleagueID: String, currentLocation: GeoPoint): aLocationObject

computeOptimalZoomRatio(memberID: String): int

initMapWithMyLocation()

overlayColleaguesLocation(locationObjects:Vector<LocationObject>): void mapView = (MapView)findViewById(R.id.mapview);
…
mapView.invalidate();

Display colleagues of the selected group on the map

Client A Client B
Client Side Objects Server Side Objects

External
Object

Fig. 9. Sequence Diagram showing Interaction Paths

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1437

6.1.3 Evaluation of Resutling Architecture

The functional and extra-functional requirements for MMS could not be realized with
conventional MVC. In our implementation of MMS with balanced MVC, we could achieve
the following benefits;
 On the functionality and datasets specific to client side are allocated to C.Control and

C.Model. Consequently, the thin-client with minimal functionality was implemented.
 Server side layers and components provide inter-user functionality and long-lasting

transactions such as inviting member and accepting invitation. This type of functionality
could not be implementable and runnable on mobile devices due to the resource
constraints and nature of the functionality.

 Server side dataset in S.Model layer provides persistency on datasets, even if datasets on
mobile device get lost. That is, data integrity and persistency were enhanced with
balanced MVC.

 On each side, the partitioning of functionality into Control layer and Model layer was
well adopted. That is, all the underlying principles and benefits of MVC were still
realized in balanced MVC.

6.2 Case Study of Comparing 5 Patterns

We have applied the proposed architecture evaluation scheme with a mobile application
providing sorting functionality. With this case study, we show how the proposed architecture
can be evaluated and claim that the most optimal architecture design is essential in
determining the overall quality of the target system.

6.2.1 Target Mobile App and Experiment Settings

We implemented an Android application, Sorting Application, which runs two sorting
algorithms; Merge sort and Selection sort which have different levels of complexity, O(n log n)
and O(n2), respectively. The application retrieves a number of integer values from a file stored
on hard disk. We have run the application with two scenarios which are different in terms of
functionality complexity, data capacity, and interaction intensity. The level of functionality
complexity is set with the number of repeatedly performing each soring algorithm within an
invocation and the number of integers to be sorted. And, the degree of interaction intensity is
the number of interactions between user and control layers while one user request is processed.
We project variations to define three scenarios as shown in Table 2. Scenario #1 represents a
situation of having two functionalities with different degree of the complexity, Scenario #2
represents a situation of managing different capacities of the database, and Situation #3
represent a situation of having different degrees of interaction intensity.

Table 2. Condition for Scenarios

Scenario
Conditions

#1 #2 #3

Functionality 1 (Merge Sort)
The number of performing sorting algorithm per an invocation 1 10 10
The number of integers to be sorted 10 100 10
The number of intergers stored in databse 100,000 100,000 100,000
The number of interactions between view and control layers 10 10 10
Functionality 2 (Selection Sort)
The number of performing sorting algorithm per an invocation 100 10 10
The number of integers to be sorted 50 100 10
The number of intergers stored in databse 100,000 100 100,000
The number of interactions between view and control layers 10 10 30

1438 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

6.2.2 Interpretation of the Case Study

With the different scenarios, we measure response time for evaluating time efficiency, and
memory and battery consumption for evaluating resource efficiency.

In case of scenario #1, the application does not manage such large amount of the data in the
client application by applying G1. As a result of Step 1, pattern 1, 2, or 3 is the candidate of
this scenario. In the step 2, we try to apply guidelines from G4 to G7. By applying G4, we
decide that all the control classes can be located either C.Control or S.Control due to lower
interactions between view and control layers. That is, the interaction intensity does not affect
any decision in this scenario. And, G5 is not applied since there is not C.DB in this scenario.
Finally, since a functionality of the selection sort is large, that functionality is located on the
server side by applying G6 and G7. A functionality of merge sort is comparatively low, that
functionality is located on the client side.

C.View

C.Control

S.Model

Client Side Server Side

S.DB

NumFor
Merge

NumFor
Selection

Merge
Ctrl

Sorting
View

S.Control
Selection

Ctrl

Fig. 10. Applying Pattern #3 to Scenario #1

As a result, Pattern 3 turns out to be the most appropriate pattern for this scenario as shown in
Fig. 10. With the architecture, we estimate the value of time behavior by using equation (4).
For the comparison, we also measure time behavior of the applications applying pattern 1 and
3. Table 3 shows an evaluation result which has a proportional number since it is hard to
compute an abstract value for each factor. The values are acquired by using guidelines in
Table 1. Note that these values are subjectively determined, rather than objectively. With this
evaluation result, we can check pattern 3 is the most appropriate to this scenario.

Table 3. Evaluation Result of Scenario #8

Pattern
Factors

#1 #2 #3

Cost_to_Compute (Fclient, Dclient) 0 1.8 0.2
Cost_to_Compute (Fserver, Dserver) 0.8 0 0.3
Cost_to_Communicate (D, NetConf) 0.5 1.2 0.3

Result 1.3 3.0 0.8

To check whether Pattern 3 has higher efficiency for this scenario, we developed the
application and measured efficiency. Fig. 11 shows the result of measuring time and resource
efficiency for scenario #1. With time and resource efficiency viewpoints, Pattern 3 has the
lowest value. Pattern 1 consumes a large amount of network communication cost due to
interaction between view and control layers while its computation cost is quite low. Pattern 2
also consumes an extremely large amount of network communication cost since the client

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1439

application requires integers to be sorted from S.DB and also computation cost is quite high.
Compared to these patterns, Pattern 3 consumes larger computation cost than Pattern 1 and
lower computation cost than Pattern 2. Pattern 3 consumes similar amount of network
communication cost to Pattern 1 and much lower network communication cost than Pattern 2.
Hence, we can conclude that Pattern 3 is most efficient for this scenario.

(a) Time Behavior (b) Resource Utilization

0

5

10

15

20

25

30

35

40

45

Pattern1 Pattern2 Pattern3

R
es
p
o
n
se
 T
im

e

Response Time

0

5

10

15

20

25

30

35

40

45

0

1

2

3

4

5

6

7

8

9

Pattern1 Pattern2 Pattern3

B
at
te
ry

M
em

o
ry

Memory Battery

(S) (S) (MB) (J)

Fig. 11. Results for Scenario #1

In case of scenario #2, the application can manage dataset both client and server sides due to
different database capacity by applying G1. In the step 2, we try to apply guidelines from G4 to
G7. By applying G4, we decide the location of control classes which are the same location as
the model layer. For the simplicity, we do not consider synchronization and parallel
processing in this scenario. As a result, Pattern 5 turns out to be the most appropriate pattern
for this scenario as shown in Fig. 12.

C.View

C.Control S.Control

Client Side Server Side

S.DB

Merge
Ctrl

Selection
Ctrl

Sorting
View

C.DB

C.Model
NumFor
Selection

S.Model
NumFor
Merge

Fig. 12. Applying Pattern #5 to Scenario #2

In the similar way of scenario #1, we also check whether pattern #5 is the most efficient by
applying the evaluation method in the section 5.2, which corresponds to our assumption. To
check whether Pattern 5 has higher efficiency for this scenario, we developed the application
and measured efficiency. Fig. 13 shows the result of measuring time and resource efficiency
for scenario #2.

1440 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

(a) Time Behavior (b) Resource Utilization

0

2

4

6

8

10

12

14

6.45

6.5

6.55

6.6

6.65

6.7

6.75

6.8

Pattern1 Pattern2 Pattern3 Pattern4 Pattern5

B
at
te
ry

M
e
m
o
ry

Memory Battery

0

5

10

15

20

Pattern1 Pattern2 Pattern3 Pattern4 Pattern5

R
e
sp
o
n
se
 T
im

e

Response Time

(S) (S) (MB) (J)

Fig. 13. Results for Scenario #2

Pattern 5 has the lowest values of response time and resource utilization. Pattern 5 has larger
computation cost than Pattern 1, similar computation cost to Pattern 3, and smaller
computation cost than Pattern 2 and Pattern 4. And, Pattern 5 is the lowest network
communication cost. Hence, Pattern 5 is turned out to be the most efficient pattern for this
situation.

In case of scenario #3, the application does not manage such large amount of the data in the
client application by applying G1. As a result of Step 1, pattern #1, #2, or #3 is the candidate of
this scenario. In the step 2, we try to apply guidelines from G4 to G7. By applying G4, we
decide that all the control classes are located to C.Control due to frequent interactions between
actor and application. Otherwise, NumOfMsg (D) is extremely increased. And, G5 is not
applied since there is not C.DB in this scenario. Finally, due to the low functionality
complexity, G6 and G7 are not also applied. As a result, Pattern #2 turns out to be the most
appropriate pattern for this scenario as shown in Fig. 14.

C.View

C.Control S.Model

Client Side Server Side

S.DB

NumFor
Merge

NumFor
Selection

Merge
Ctrl

Selection
Ctrl

Sorting
View

Fig. 14. Applying Pattern #2 to Scenario #3

Similarly, we also check whether pattern #2 is the most efficient by applying the evaluation
method in the section 5.2, which corresponds to our assumption. To check whether Pattern 2
has higher efficiency for this scenario, we developed the application and measured efficiency.
Fig. 15 shows the result of measuring time and resource efficiency for scenario #2. Pattern 2
has the lowest values of response time. As the candidates, Pattern 1 and Pattern 3, they have
lower efficiency since they yield more network overheads due to frequent interactions
between actor and application.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1441

(a) Time Behavior (b) Resource Utilization

0

5

10

15

20

25

30

35

40

Pattern1 Pattern2 Pattern3

R
es
p
o
n
se
 T
im

e

Response Time

0

20

40

60

80

100

6.4

6.45

6.5

6.55

6.6

6.65

6.7

6.75

6.8

6.85

Pattern1 Pattern2 Pattern3

B
at
te
ry

M
em

o
ry

Memory Battery

(S) (S) (MB) (J)

Fig. 15. Results for Scenario #3

6.3 Case Study of Comparing Balanced MVC to Fat Client and Fat Server

In this section, we perform another case study to prove whether our patterns can ensure better
efficiency than other conventional architecture patterns. There are a number of architecture
patterns/styles known such as shared repository, client-server architecture [18]. Since the
proposed patterns deal with functionality partition, we select patterns having the same purpose;
Fat Client (i.e. Standalone) Pattern and Fat Server (i.e. Mobile Web) Pattern. For this, we
implement two additional versions of sorting application for the Scenario #2 as shown in Fig.
16. And, for the balanced MVC architecture, we utilize the architecture in Fig. 12.

View

Control

Model

Client Side

DB

NumFor
Merge

NumFor
Selection

Merge
Ctrl

Selection
Ctrl

Sorting
View

View

Control

Model

Server Side

DB

User

NumFor
Merge

NumFor
Selection

Merge
Ctrl

Selection
Ctrl

Sorting
View

User

Client Side

Web
Browser

<Fat Client> <Fat Server>

Fig. 16. Architecture with Fat Client and Fat Server

For these three different architecture designs, we measure response time for evaluating time
efficiency, and memory and battery consumption for evaluating resource efficiency. Table 4
shows the result of performing this case study.

Table 4. Evaluation Result of Scenario #8

QoS
Pattern

Response Time (ms) Memory Usage (KB) Battery Consumption (J)

Fat Client 15.102 9.588 23.1

Fat Server 4.332 6.22 8.9

Balanced MVC 4.073 7.4 6.561

In case of Fat Client pattern, although no network communication is required, the largest
response time is consumed since all the functionalities with substantial complexity should be

1442 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

run on mobile device. Correspondingly, a large amount of resources is consumed. In addition,
Fat client has a severe limitation on managing extremely large amount of dataset.

In case of Fat Server pattern, computation time is less consumed than the one of balanced
MVC architecture, but it consumes larger amount of network communication time. As a result,
the overall response time is similar to balanced MVC architecture. However, more resources
are consumed in Fat Server since the application needs to wait for a reply from sever
application while keeping its network connection. Although we do not consider parallel
processing in this case stud, we can ensure that balanced MVC architecture can yield much
better efficiency than Fat Server if some functionalities are processed in parallel.

7. Conclusion

Due to limited computing power and hardware resource of mobile devices, large-scaled
applications could not be deployed on these devices. To remedy the limitations in terms of
performance, it is inevitable to let some heavy-weight functionality executed on the server side
and let client application invoke the functionality in the server. To realize this kind of mobile
applications, we proposed a unique, ideal and practical architecture for mobile applications,
called balanced MVC architecture.

To design balanced MVC architecture for a target mobile application by considering
performance efficiency, we define key two criteria by adopting ISO/IEC 9126; time behavior
and resource utilization. And, by considering the criteria, we define a three-step method to
design a balanced MVC architecture which embodies functionality partitioning for high
performance. To make sure whether a designed architecture is fully satisfied with the criteria,
we presented a four-step method to evaluate the balanced MVC architecture. The evaluation
method is based on a simulation which calculates an expected the value of total performance
by using use case scenarios. Finally, we performed three case studies to show how the
architecture is applied in practice, prove how correctly the architecture is evaluated, to
compare our architecture patterns with other conventional ones. As our future research, we are
developing simulation-based evaluation tool. The experiment results are used to set up
baseline values for calculating all the equations defined in this paper.

References

[1] B. König-Ries and F. Jena, “Challenges in mobile application development,” it-Information
Technology, vol.52, no.2, pp.69-71, 2009. Article (CrossRefLink).

[2] G.H. Forman and J. Zahorjan, “The challenges of mobile computing,” IEEE Computer, vol.27,
no.4, pp.38-47, Apr.1994. Article (CrossRefLink).

[3] ISO/IEC, ISO-IEC 9126-1 Software Engineering – Product Quality – Part 1: Quality Model, 2001.

[4] R. Tergujeff, J. Haajanen, J. Leppanen and S. Toivonen, “Mobile SOA: Service orientation on
lightweight mobile devices,” in Proc. of 2007 IEEE Int. Conf. on Web Services, pp.1224-1225,
Jul.2007. Article (CrossRefLink).

[5] Y. Natchetoi, V. Kaufman and A. Shapiro, “Service-oriented architecture for mobile applications,”
in Proc. of the 1st Inernational Workshop on Software Architectures and Mobility, pp.27-32, May.
2008. Article (CrossRefLink).

[6] A. Ennai and S. Bose, “MobileSOA: A service oriented web 2.0 framework for context-aware,
lightweight and flexible mobile applications,” in Proc. of the 2009 12th Enterprise Distributed
Object Computing Conf. Workshop, pp.348-382, Sept.2008. Article (CrossRefLink).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 5, May 2012 1443

[7] K. Kumar and Y.H. Lu, “Cloud computing for mobile users: Can offloading computation save
energy?,” IEEE Computer, vol.43, no.4, pp.51-56, Apr.2010. Article (CrossRefLink).

[8] M. Hassan, W. Zhao and J. Yang, “Provisioning web services from resource constrained mobile
devices,” in Proc. of 2010 IEEE 3rd International Conference on Cloud Computing, pp. 490-497,
2010, Article (CrossRefLink).

[9] M.T. Tran, Y.H. Kim and J.H. Lee, “Load balancing and mobility management in multi-homed
wireless mesh networks,” KSII Transactions on Internet and Information Systems, vol.5, no.5,
pp.959-975, May.2011, Article (CrossRefLink).

[10] R. Matero and J.W. Lee, “Dynamic service assignment based on proportional ordering for the
adaptive resource management of cloud systems,” KSII Transactions on Internet and Information
Systems, vol.5, no.12, pp.2294-2314, Dec.2011, Article (CrossRefLink)

[11] C. Ryan and P. Rossi, “Software, performance, and resource utilisation metrics for context-aware
mobile applications,” in Proc. of the 11th IEEE International Software Metrics Symposium, pp.12,
Sept.2005. Article (CrossRefLink).

[12] F. Aquilani, S. Balsamo and P. Inverardi, “Performance analysis at the software architectural
design level,” Performance Evaluation, vol.45, no.2-3, pp.147-178, 2001. Article (CrossRefLink).

[13] P. Abrahamsson, A. Hanhineva, H. Hulkko, T. Ihme, J. Jäälinoja, M. Korkala, J. Koskela, P.
Kyllönen and O. Salo, “Mobile-D: An agile approach for mobile application development,” in
Proc. of the 19th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp.174-175, Oct.2004. Article (CrossRefLink).

[14] V. Rahimian and R. Ramsin, “Designing an agile methodology for mobile software development:
A hybrid method engineering approach,” in Proc. of the 2nd International Conference on Research
Challenges in Information Science, pp.337-342, Jun.2008. Article (CrossRefLink).

[15] J. Häkkilä and J. Mäntyjärvi, “Developing design guidelines for context-aware mobile
applications,” in Proc. of the 3rd International Conference on Mobile Technology, Applications,
and System, pp.1-7, Oct.2006. Article (CrossRefLink).

[16] M. Sá and L. Carriço, “Lessons from early stages design of mobile applications,” in Proc. of the
10th International Conference on Human Computer Interaction with Mobile Devices and Services,
pp.127-136, Sept.2008. Article (CrossRefLink).

[17] N.Z. Ayob, R.C. Hussin and H.M. Dahlan, “Three layers design guideline for mobile application,”
in Proc. of 2009 International Conference on Information Management and Engineering,
pp.427-431, Apr.2009. Article (CrossRefLink).

[18] N. Rozanski E. and Woods, Software Systems Architecture: Working With Stakeholders Using
Viewpoints and Perspectives, Addison Wesley, 2005.

[19] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture Volume 1: A System of Patterns, Wiley, 1996.

[20] J. Kleinberg and E. Tardos, Algorithm Design. Addison Wesley 2005.
[21] E.M. Kim, O.B. Chang, S. Kusumoto and T. Kikuno, “Analysis of metrics for object-oriented

program complexity,” in Proc. of 8th Annual International on Computer Software and
Applications Conference, pp.201-207, Nov.1994. Article (CrossRefLink).

[22] R. Lee and B. Jeng, “Load-balancing tactics in cloud,” in Proc. of 2011 International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp.447-454, 2011. Article
(CrossRefLink).

1444 La et al.: Balanced MVC Architecture for High Efficiency Mobile Applications

Hyun Jung La is a research staff in the Services and Software Engineering Laboratory at
Soongsil University, Seoul, Korea. She is also a lecturer at the University, offering courses
of software engineering and object-oriented analysis and design. She received her master
and Ph.D. degrees from Soongsil University in 2005 and 2011 respectively. Dr. La has been
actively engaged and played the key role of software architect in large-scaled projects for
the past years. Her research interests include cloud services, software architecture design,
and advanced mobile computing.

Soo Dong Kim is a professor in the department of Computer Science at Soongsil
University, Seoul, Korea. He received his B.S. degree in Computer Science from Northeast
Missouri State University in 1984, and his Master and Ph.D. degrees from the University of
Iowa, Iowa, USA in 1988 and 1991 respectively. His research interests include software
architecture, cloud services, advanced mobile computing, and smart services. He has been
actively engaging in large-scaled industry projects, and providing extensive training on
software technology to IT industry.

