• Title/Summary/Keyword: layered FGM

Search Result 22, Processing Time 0.029 seconds

Structural monitoring of layered FGM distribution ring support: Analysis with and without internal pressure

  • Ghamkhar, Madiha;Harbaoui, Imene;Hussain, Muzamal;Ayed, Hamdi;Khadimallah, Mohamed A.;Alshoaibi, Adil
    • Advances in nano research
    • /
    • v.12 no.3
    • /
    • pp.337-344
    • /
    • 2022
  • In this work, the vibrational frequency of two layered FGM cylindrical shell with and without the effects of internal pressure under ring support are discussed in detailed. The functionally graded materials of a cylindrical shell are designed for specific purpose and studied under various boundary conditions. The Love shell dynamical equations theory is utilized to find the relationship between the curvature displacement and strain displacement. Natural frequency vibrations are analyzed by using volume polynomial for bi-layered FGM shell under ring support both for with and without internal pressures.

Fabrication of diamond/W-Cu functionally graded material by microwave sintering

  • Wei, Chenlong;Cheng, Jigui;Zhang, Mei;Zhou, Rui;Wei, Bangzheng;Yu, Xinxi;Luo, Laima;Chen, Pengqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.975-983
    • /
    • 2022
  • A four-layered W/Cu functionally graded material (FGM) (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W60% + Cu40%, wt.% fraction) and a four-layered diamond/W-Cu FGM (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W55% + Cu40% + diamond5%, wt.% fraction) were fabricated by microwave sintering. The thermal conductivity and thermal shock resistance of diamond/W-Cu FGM and W-Cu FGM were investigated. The morphologies of the diamond particles and different FGMs were analyzed using AFM, SEM, EDS, and TEM. The results show that a 200 nm rough tungsten coating was formed on the surface of the diamond. The density of the tungsten-coated diamond/W-Cu FGM, obtained by microwave sintering at 1200 ℃ for 30 min, was 94.66%. The thermal conductivity of the fourlayered diamond/W-Cu FGM was 220 W·m-1·K-1, which is higher than that of the four-layered W/Cu FGM (209 W m-1 K-1). This indicates that adding an appropriate amount of tungsten-coated diamond to the high Cu layer W/Cu FGM improves the thermal conductivity of the composite. The diamond/W-Cu FGM sintered at 1200 ℃ for 10 min exhibited better thermal shock resistance than diamond/W-Cu FGM sintered at 1100 ℃ for 10 min.

An approximate spectral element model for the dynamic analysis of an FGM bar in axial vibration

  • Lee, Minsik;Park, Ilwook;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.551-561
    • /
    • 2017
  • As FGM (functionally graded material) bars which vibrate in axial or longitudinal direction have great potential for applications in diverse engineering fields, developing a reliable mathematical model that provides very reliable vibration and wave characteristics of a FGM axial bar, especially at high frequencies, has been an important research issue during last decades. Thus, as an extension of the previous works (Hong et al. 2014, Hong and Lee 2015) on three-layered FGM axial bars (hereafter called FGM bars), an enhanced spectral element model is proposed for a FGM bar model in which axial and radial displacements in the radial direction are treated more realistic by representing the inner FGM layer by multiple sub-layers. The accuracy and performance of the proposed enhanced spectral element model is evaluated by comparison with the solutions obtained by using the commercial finite element package ANSYS. The proposed enhanced spectral element model is also evaluated by comparison with the author's previous spectral element model. In addition, the effects of Poisson's ratio on the dynamics and wave characteristics in example FGM bars are numerically investigated.

Three-dimensional analysis of the natural vibration of the three-layered hollow sphere with middle layer made of FGM

  • Akbarov, Surkay D.;Guliyev, Hatam H.;Yahnioglu, Nazmiye
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.563-576
    • /
    • 2017
  • This paper is a continuation of the investigations started in the paper by Akbarov, S.D., Guliyev, H.H and Yahnioglu, N. (2016) "Natural vibration of the three-layered solid sphere with middle layer made of FGM: three-dimensional approach", Structural Engineering and Mechanics, 57(2), 239-263, to the case where the three-layered sphere is a hollow one. Three-dimensional exact field equations of elastodynamics are employed for investigation and the discrete-analytical method is employed for solution of the corresponding eigenvalue problem. The FGM is modelled as inhomogeneous for which the modulus of elasticity, Poison's ratio and density vary continuously through the inward radial direction according to power law distribution. Numerical results on the natural frequencies are presented and discussed. These results are also compared with the corresponding ones obtained in the previous paper by the authors. In particular, it is established that for certain harmonics and for roots of certain order, the values of the natural frequency obtained for the hollow sphere can be greater (or less) than those obtained for the solid sphere.

Fracture Characteristics of Flame Thermal Shock in PSZ/NiCrAlY FGM (세라믹(PSZ)/금속(NiCrAlY) 경사기능성 복합재료의 화염 열충격 파괴특성)

  • Song, Jun-Hee;Mun, Sang-Don
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.775-779
    • /
    • 2010
  • Functionally graded materials (FGM) of PSZ/NiCrAlY on Inconel substrate were fabricated by detonation gun spraying method. A thick ceramic layer generally has a high thermal barrier effect however, because failure often occurs, the use of an FGM layer gives an advantage in thermal property. During the thermal shock test, micro fracture processes were detected by the AE method. Also, the thermal shock test was performed for NFGM, FGM and the changed FGM in the layered composition profile. It was found through AE testing and the observation of fracture surface that FGM was superior to NFGM in thermal shock properties. The linear or metal-rich type FGM in composition profile had the best resisting property among the FGM. It was found that the controlled composition profile of the graded layers had better thermal properties.

Fabrication of Functionally Graded Materials Between P21 Tool Steel and Cu by Using Laser-Aided Layered Manufacturing (레이저 적층조형을 이용한 P21 툴 스틸과 Cu 간 기능성 경사 복합재의 제작)

  • Jeong, Jong-Seol;Shin, Ki-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.61-66
    • /
    • 2013
  • With the development of layered manufacturing, thermally conductive molds or molds embedding conformal cooling channels can be directly fabricated. Although P21 tool steel is widely used as a mold material because of its dimensional stability, it is not efficient for cooling molds owing to its low thermal conductivity. Hence, the use of functionally graded materials (FGMs) between P21 and Cu may circumvent a tradeoff between the strength and the heat transfer rate. As a preliminary study for the layered manufacturing of thermally conductive molds having FGM structures, one-dimensional P21-Cu FGMs were fabricated by using laser-aided direct metal tooling (DMT), and then, material properties such as the thermal conductivity and specific heat that are related to the heat transfer were measured and analyzed.

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

Fabrication of functionally graded materials of hydroxyapatite and zirconia (수산화아파타이트와 지르코니아의 경사기능 재료의 제조)

  • 김성진;조경식;박노진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.115-119
    • /
    • 2001
  • Hydroxyapatite-yttria stabilized zirconia bioceramics containing fine zirconia particles were prepared as 3-layered functionally graded materials (FGMs) using a spark plasma sintering (SPS) and hot pressing (HP) apparatuses. The pretreatment of the raw hydroxyapatite promoted the sinterability of hydroxyapatite. The maximum density of pretreated FGM composites could be obtained at lower temperature than that for he untreated FGM samples. No decomposition from hydroxyapatite to three calcium phosphate (TCP) was observed in FGMs of HAp-$ZrO_2$ sintered below $1200^{\circ}C$ for 8 min under 10 MPa by SPS. However, the transformation of the tetragonal zirconia to the cubic modification had occurred in FGMs at this temperature. The presence of zirconia i.e. stress induced transformation of zirconia may be expected to enhance the mechanical properties of HAp-$ZrO_2$ FGM. The SPS is concluded as a better method to fabricated the FGM with dense and high strength compared with HP process.

  • PDF

An Integrated CAD System for FEA-based Design of Heterogeneous Objects (복합재 형상의 FEA기반 설계를 위한 통합 CAD 시스템)

  • Shin K. H.;Kim J. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.5
    • /
    • pp.328-338
    • /
    • 2005
  • CAD systems are routinely used by designers for creating part geometries. Interfaces to CAE/CAM systems are also commonplace enabling the FEA-based design optimization and the rapid fabrication of the designed part. However, conventional CAD systems have thus far focused on objects with homogeneous interior. Two recent advances--use of heterogeneous objects such as Functionally Graded Materials (FGM) in parts and Layered Manufacturing Technology (LMT)--have brought to the forefront the need for CAD systems to support the creation of geometry as well as the graded material inside. We first describe the need and the components of such a CAD system for heterogeneous objects. A prototype CAD system is then described with one specific example (thermal barrier type FGM, pressure vessel) in order to illustrate the use of the implemented CAD system. The implemented system is manually integrated with FEA tools for optimal design. Our ongoing work involves the automation of the integration with FEA tools.

Decomposition-based Process Planning far Layered Manufacturing of Functionally Gradient Materials (기능성 경사복합재의 적층조형을 위한 분해기반 공정계획)

  • Shin K.H.;Kim S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.11 no.3
    • /
    • pp.223-233
    • /
    • 2006
  • Layered manufacturing(LM) is emerging as a new technology that enables the fabrication of three dimensional heterogeneous objects such as Multi-materials and Functionally Gradient Materials (FGMs). Among various types of heterogeneous objects, more attention has recently paid on the fabrication of FGMs because of their potentials in engineering applications. The necessary steps for LM fabrication of FGMs include representation and process planning of material information inside an FGM. This paper introduces a new process planning algorithm that takes into account the processing of material information. The detailed tasks are discretization (i.e., decomposition-based approximation of volume fraction), orientation (build direction selection), and adaptive slicing of heterogeneous objects. In particular, this paper focuses on the discretization process that converts all of the material information inside an FGM into material features like geometric features. It is thus possible to choose an optimal build direction among various pre-selected ones by approximately estimating build time. This is because total build time depends on the complexity of features. This discretization process also allows adaptive slicing of heterogeneous objects to minimize surface finish and material composition error. In addition, tool path planning can be simplified into fill pattern generation. Specific examples are shown to illustrate the overall procedure.