• Title/Summary/Keyword: layer method

Search Result 9,102, Processing Time 0.044 seconds

Temperature History of Slab Concrete Depending on Insulation Curing Method in Cold Weather Concreting (한중시공시 단열양생방법 변화에 따른 슬래브 콘크리트의 온도이력 특성)

  • Kim Jong-Back;Lim Choon-Goun;Park Koo-Byoung;Kim Seoung-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.17-20
    • /
    • 2005
  • This paper reported the temperature history of concrete placed at deck plate slab under cold climate condition by varying with surface insulating type. No curing sheet and simple insulation curing including non-woven fabric, double layer bubble sheet, the combination of double layer bubble sheet and non-woven fabric dropped temperature below zero within 24 hours, which caused frost damage at early age. On the other hand, the combination of double layer bubble sheet and non-woven fabric and double layer bubble sheet and styrofoam maintained minimum temperature above $4^{\circ}C\;and\;8^{\circ}C$, respectively. Based on core test results compressive strength of concrete with the combination of double layer bubble sheet and non-woven fabric and double layer bubble sheet and styrofoam was higher than those with other curing method due to good insulation effect.

  • PDF

The Quantitative Analysis of SB Latex Contents in Coating Color and Coating Layer of Coated Paper Using FT/Raman Spectroscopy (FT/RAman을 이용한 도공액과 도공지의 도공층 내의 SB Latex 정량분석)

  • 이복진;정순기;윤동호;마금자
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.16-22
    • /
    • 1999
  • The quantitative analysis of SB latex contents in coating color and coated paper was investigated with FT/Raman spectroscopy. From the measured FT/IR and FT/Ramon spectra, the peaks of coating color were compared with those of each compoents . Calibration curves were obtained by the area of latex peaks and PLS method of QuantIR program. The relation of predicted values in PLS method and actual values in coating mixtures and coating layer was examined. The components of coating layer in coated paper were investigated by EDS , X-mapping and SEM, The contents of latex in z-direction were calculated in the coating layer of unknown coated paper. The latex concentration measurements of Top layer and Pre layer in double coated paper show that each layer has different value. In single coated paper, it is clear that the latex concentration is highest at the surface and decreases with an increase of depth. From those results it is indicated that the latex migrates to the coated surface. The result of this study may be applied to the binder migration study and the quality control in paper mill.

  • PDF

Examination of contact problem between functionally graded punch and functionally graded layer resting on elastic plane

  • Polat, Alper
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.135-143
    • /
    • 2021
  • In this study, continuous contact problem in the functionally graded (FG) layer loaded with a FG flat punch resting on the elastic semi-infinite plane was analyzed by the finite element method (FEM). It was assumed that the shear modulus and density of the layer and punch varied according to exponentially throughout their depth. FG layer's weight was included to the problem and additionally all surfaces were considered as frictionless. Analysis of FG materials was performed with a special macro which was added to the ANSYS program. Firstly, the shear modulus of the punch was considered to be very rigid and the results of initial separation load (λcr) and distance (xcr) were compared with the analytical solution. Afterwards, results obtained from the contact analysis made according to the inhomogeneity parameters (β, γ) between FG punch-FG layer which had been unprecedented in the literature were discussed. As a result, FG punch's stress values at the punch edges where stress accumulations occurred were found to be smaller than the rigid punch. The security of the structure, longer life of the material and ease of production are directly related to the reduction of the stress values. The results obtained in this study are important in this respect. Also this work is the first study that investigates the effect of FG punch on the FG layer.

Blind via Hole manufacturing technology using UV Laser (UV 레이저에 의한 블라인드 비아홀 가공)

  • 장정원;김재구;신보성;장원석;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.160-163
    • /
    • 2002
  • Micro via hole Fabrication is studied by means of minimizing method to circuit size as many electric products developed to portable and minimize. Most of currently micro via hole fabrication using laser is that fabricate insulator layer using CO2 Laser after Cu layer by etching, or fabricate insulator layer using IR after trepanning Cu by UV. In this paper, it was performed that a metal layer and insulator layer were worked upon only one UV laser, and increase to processing speed by experiment.

  • PDF

Estimation of the Convective Boundary Layer Height Using a UHF Radar (UHF 레이더를 이용한 대류 경계층 고도의 추정)

  • 허복행;김경익
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.1-14
    • /
    • 2001
  • The enhancement of the refractive index structure parameter $C_n^2$ often occurs where vertical gradients of virtual potential temperature ${\theta}_v$ and mixing ratio q have their maximum values. The $C_n^2$ can be a very useful parameter for estimating the convective boundary layer(CBL) height. The behavior of $C_n^2$ peaks, often used to locate the height of mixed layer, was investigated in the present study. In addition, a new method to determine the CBL height objectively using both $C_n^2$ and vertical air velocity variance ${\sigma}_w$ data of UHF radar was also suggested. The present analysis showed that the $C_n^2$ peaks in the backscatter intensity profiles often occurred not only at the top of the CBL but also at the top of a residual layer or at a cloud layer. The $C_n^2$ peaks corresponding to the CBL heights were slightly lower than the CBL heights derived from rawinsonde sounding data when vertical mixing owing to weak solar heating was not significant and the height of strong vertical ${\theta}_v$ gradients were not consistent with that of strong vertical q gradients. However, the $C_n^2$ peaks corresponding to the CBL heights were in good agreement with the rawinsonde-estimated CBL hegiths when vertical mixing owing to solar heating was significant and the vertical gradient of both ${\theta}_v$ and q in the entrainment zone was very strong. The maximum backscatter intensity method, which determines the height of $C_n^2$ peak as the CBL height, correctly estimated the CBL height when the $C_n^2$ profile had single peak, but this method erroneously estimated the CBL height when there was a residual layer or a cloud layer over the top of the CBL. The new method distinguished when there the CBL height from the peak due a cloud layer or a residual layer using both $C_n^2$ and ${\sigma}_w$ data, and correctly estimated the CBL height. As for estimation of diurnal variation of the CBL height, the new method backscatter intensity method even if the vertical profile of backscatter intensity had two peaks from the CBL height and a residual layer or a cloud layer.

A Case Study on the Heat budget of the Marine Atmosphere Boundary Layer due to inflow of cloud on observation at Ulleungdo (울릉도에서 구름 유입시 관측한 해양대기경계층의 열수지에 관한 사례연구)

  • Kim, Hee-Jong;Yoon, Ill-Hee;Kwon, Byung-Hyuk
    • Journal of the Korean earth science society
    • /
    • v.25 no.7
    • /
    • pp.629-636
    • /
    • 2004
  • In order to study developments of the marine atmosphere boundary layer in cloud incoming, important parameters like heat advection, surface layer heat flux, and radiation energy were estimated using the rawinsonde, AWS data, satellite images, and buoy data which was installed at the East Sea. We explained the variation and the development of mixed layer in terms of surface layer heat flux and long wave radiation under the cloudy sky. The heat flux was obtained by means of the bulk method. Conservation of heat was analysed by heat budget equation, which was consist of buoy data in the East sea, and sounding data at Ulleungdo and at Pohang. During the inflow of cloud, radiative cooling at the surface after was suppressed and long wave radiation from cloud played a role of warming. The surface layer temperature was also remained warm by influence of warm advection from south-easterly direction. The air temperature in night was increased, as a result, mixed layer was not destroyed and The nocturnal boundary layer was composed of the mixed layer and the residual layer.

The Relationship Between the Quality of Surface Layer of Concrete Floor and the Defect of Self-Leveling Material - Evaluation Method about Surface Layer Quality of Concrete Floor Groundwork Corresponding to Defect in Self-leveling Material (Part II) - (콘크리트 표층부 품질이 SL재의 하자에 미치는 영향 - SL재의 하자 발생에 영향을 미치는 콘크리트 표층부의 품질 평가방법(II) -)

  • Kim, Doo-Ho;Choi, Soo-Kyung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.125-132
    • /
    • 2007
  • The use of Self-Leveling material is increasing recently. This paper assesses the quality of surface layer of concrete floor when Self-Leveling material is defective. The paper shows how to predict the defect of SL material before construction begins. The relationship between the quality of surface layer of concrete floor and the defect of SL material was determined and the quality of surface layer of concrete floor was then estimated. The relations between the quality of surface layer and the defect of SL material were determine considering surface strength, moisture, and consistency of surface layer. Absorbing amount was used as the indicator of consistency and the absorbing amount of test material was measured. Then the relations between the test material and surface strength were determined. Generally concrete floor with greater consistency has greater surface strength, however in this study, we hound that high impact concrete floor could have lower surface strength as the consistency gets bigger. The relations between the level of defect occurred in SL material and the quality of surface layer were examined and we clarified that the surface layer with lower consistency gets higher possibility to occur exfoliation in early stage, one or two weeks after constructing SL material. When the consistency is sufficient, the occurring situation of defect depends upon the moisture of surface layer. Little amount of moisture gets higher possibility not to occur the defect. As the amount increases, fissure generates and early exfoliation may occur. In addition, the level of fissure is highly related with the surface strength.

A Study on the Effect of Mid Layer on Supersonic 2D Double Shear Layer (초음속 2차원 2단 혼합층에서 중간층의 역할)

  • Kim, Dongmin;Baek, Seungwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • The basic flow configuration is composed of a plane, double shear layer where relatively thin mid gas layer is sandwiched between air and fuel stream. The present study describes numerical investigations concerning the combustion enhancement according to a variation of mid layer thickness. In this case, the effect of heat release in turbulent mixing layers is important. For the numerical solution, a fully conservative unsteady $2^{nd}$ order time accurate sub-iteration method and $2^{nd}$ order TVD scheme are used with the finite volume method including k-${\omega}$ SST model. The results consists of three categories; single shear layer consists of fuel and air, inert gas sandwiched between fuel and air, cold fuel gas sandwiched between fuel and air. The numerical calculations has been carried out in case of 1, 2, 4 mm of mid layer thickness. The height of total gas stream is 4 cm. The combustion region is broadened in case of inert gas layer of 2, 4 mm thickness and cold fuel layer of 4 mm thickness compared with single shear layer.

A Cross-Layer Cooperative Routing Architecture for Mobile Wireless Sensor Networks (모바일 무선 센서 네트워크를 위한 Cross-Layer 협력도움 라우팅 구조)

  • Lee, Joo-Sang;An, Beong-Ku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.141-150
    • /
    • 2011
  • In this paper, we propose a Cross-Layer Cooperative Routing(CLCR) architecture to support transmission efficiency in mobile wireless sensor networks. The main features and contributions of the proposed architecture and method are as follows. First, the clustering which uses the location information of nodes is utilized as infrastructure. Second, a cross-layer strategy which uses the technologies of network layer, MAC layer, physical layer together to support transmission efficiency and channel efficiency for cooperative-aided routing and transmission. Third, we consider realistic approach in the view points of the mobile ad-hoc wireless sensor networks while conventional methods just consider fixed sensor network environments. The performance evaluation of the proposed method is performed via simulation using OPNET and theoretical analysis. The results of performance evaluation of the proposed CLCR show improvement of transmission efficiency by the proposed CLCR.

Changes in Interface Properties of TCO/a-Si:H Layer by Zn Buffer Layer in Silicon Heterojunction Solar Cells (실리콘 이종접합 태양전지의 Zn 확산방지층에 의한 TCO/a-Si:H 층간의 계면특성 변화)

  • Tark, Sung-Ju;Son, Chang-Sik;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.6
    • /
    • pp.341-346
    • /
    • 2011
  • In this study, we inserted a Zn buffer layer into a AZO/p-type a-si:H layer interface in order to lower the contact resistance of the interface. For the Zn layer, the deposition was conducted at 5 nm, 7 nm and 10 nm using the rf-magnetron sputtering method. The results were compared to that of the AZO film to discuss the possibility of the Zn layer being used as a transparent conductive oxide thin film for application in the silicon heterojunction solar cell. We used the rf-magnetron sputtering method to fabricate Al 2 wt.% of Al-doped ZnO (AZO) film as a transparent conductive oxide (TCO). We analyzed the electro-optical properties of the ZnO as well as the interface properties of the AZO/p-type a-Si:H layer. After inserting a buffer layer into the AZO/p-type a-Si:H layers to enhance the interface properties, we measured the contact resistance of the layers using a CTLM (circular transmission line model) pattern, the depth profile of the layers using AES (auger electron spectroscopy), and the changes in the properties of the AZO thin film through heat treatment. We investigated the effects of the interface properties of the AZO/p-type a-Si:H layer on the characteristics of silicon heterojunction solar cells and the way to improve the interface properties. When depositing AZO thin film on a-Si layer, oxygen atoms are diffused from the AZO thin film towards the a-Si layer. Thus, the characteristics of the solar cells deteriorate due to the created oxide film. While a diffusion of Zn occurs toward the a-Si in the case of AZO used as TCO, the diffusion of In occurs toward a-Si in the case of ITO used as TCO.