• 제목/요약/키워드: layer approach

검색결과 1,232건 처리시간 0.035초

사출성형된 고분자 블렌드의 형태학적 상구조 예측 (The Prediction of Phase Morphology of Injection Molded Polymer Blends)

  • 손영곤
    • Elastomers and Composites
    • /
    • 제39권3호
    • /
    • pp.193-208
    • /
    • 2004
  • 사출성형된 고분자 블렌드의 형태학적 상구조를 실험 및 이론적인 방법으로 연구하였다. 실험적인 연구로서, 형태학적 상구조에 미치는 사출속도, 사출온도 효과를 조사하였다. 이를 통하여 고분자 블렌드로 제조된 사출성형품에서 두께 위치에 따른 형태학적 상구조 변화를 뚜렷하게 관찰할 수 있었으며, 사출성형품 표면에 분산상이 가늘고 길게 변형되어있는 스킨층, 그안 쪽에 분산상이 다소 크고 변형이 되어있는 서브스킨층 및 사출성형품의 중심에 위치하고 분산상의 변형이 전혀 없는 코어영역이 존재함을 알 수 있었다. 실험적인 연구 결과를 토대로 고분자 블렌드의 사출과정에서 형성되는 형태학적 상구조를 예측하는 계산 알고리듬을 제시하였다. 상업화된 사출성형 해석용 프로그램에서 얻은 유동장 정보와 유동장에서 분산상의 거동에 관한 이론 및 실험식을 조합하여 사출성형된 고분자 블렌드의 형태학적 상구조를 예측할 수 있었다. 제시된 계산 알고리듬으로 사출온도 및 사출속도에 의한 형태학적 상구조의 변화를 잘 예측할 수 있었다.

A Bio-inspired Hybrid Cross-Layer Routing Protocol for Energy Preservation in WSN-Assisted IoT

  • Tandon, Aditya;Kumar, Pramod;Rishiwal, Vinay;Yadav, Mano;Yadav, Preeti
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1317-1341
    • /
    • 2021
  • Nowadays, the Internet of Things (IoT) is adopted to enable effective and smooth communication among different networks. In some specific application, the Wireless Sensor Networks (WSN) are used in IoT to gather peculiar data without the interaction of human. The WSNs are self-organizing in nature, so it mostly prefer multi-hop data forwarding. Thus to achieve better communication, a cross-layer routing strategy is preferred. In the cross-layer routing strategy, the routing processed through three layers such as transport, data link, and physical layer. Even though effective communication achieved via a cross-layer routing strategy, energy is another constraint in WSN assisted IoT. Cluster-based communication is one of the most used strategies for effectively preserving energy in WSN routing. This paper proposes a Bio-inspired cross-layer routing (BiHCLR) protocol to achieve effective and energy preserving routing in WSN assisted IoT. Initially, the deployed sensor nodes are arranged in the form of a grid as per the grid-based routing strategy. Then to enable energy preservation in BiHCLR, the fuzzy logic approach is executed to select the Cluster Head (CH) for every cell of the grid. Then a hybrid bio-inspired algorithm is used to select the routing path. The hybrid algorithm combines moth search and Salp Swarm optimization techniques. The performance of the proposed BiHCLR is evaluated based on the Quality of Service (QoS) analysis in terms of Packet loss, error bit rate, transmission delay, lifetime of network, buffer occupancy and throughput. Then these performances are validated based on comparison with conventional routing strategies like Fuzzy-rule-based Energy Efficient Clustering and Immune-Inspired Routing (FEEC-IIR), Neuro-Fuzzy- Emperor Penguin Optimization (NF-EPO), Fuzzy Reinforcement Learning-based Data Gathering (FRLDG) and Hierarchical Energy Efficient Data gathering (HEED). Ultimately the performance of the proposed BiHCLR outperforms all other conventional techniques.

Improved FGS Coding System Based on Sign-bit Reduction in Embedded Bit-plane Coding

  • Seo, Kwang-Deok;Davies, Robert J.
    • 대한임베디드공학회논문지
    • /
    • 제2권3호
    • /
    • pp.129-137
    • /
    • 2007
  • MPEG-4 FGS is one of scalable video coding schemes specified In ISO/IEC 14496-2 Amendment 2, and particularly standardized as a scheme for providing fine granular quality and temporal scalabilities. In this paper, we propose a sign-bit reduction technique in embedded bit-plane coding to enhance the coding efficiency of MPEG-4 FGS system. The general structure of the FGS system for the proposed scheme is based on the standard MPEG-4 FGS system. The proposed FGS enhancement-layer encoder takes as input the difference between the original DCT coefficient and the decision level of the quantizer instead of the difference between the original DCT coefficient and its reconstruction level. By this approach, the sign information of the enhancement-layer DCT coefficients can be the same as that of the base-layer ones at the same frequency index in DCT domain. Thus, overhead bits required for coding a lot of sign information of the enhancement-layer DCT coefficients in embedded bit-plane coding can be removed from the generated bitstream. It is shown by simulations that the proposed FGS coding system provides better coding performance, compared to the MPEG-4 FGS system in terms of compression efficiency.

  • PDF

Highly Stretchable and Sensitive Strain Sensors Fabricated by Coating Nylon Textile with Single Walled Carbon Nanotubes

  • Park, Da-Seul;kim, Yoonyoung;Jeong, Soo-Hwan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.363.2-363.2
    • /
    • 2016
  • Stretchable strain sensors are becoming essential in diverse future applications, such as human motion detection, soft robotics, and various biomedical devices. One of the well-known approaches for fabricating stretchable strain sensors is to embed conductive nanomaterials such as metal nanowires/nanoparticles, graphene, conducting polymer and carbon nanotubes (CNTs) within an elastomeric substrate. Among various conducting nanomaterials, CNTs have been considered as important and promising candidate materials for stretchable strain sensors owing to their high electrical conductivity and excellent mechanical properties. In the past decades, CNT-based strain sensors with high stretchability or sensitivity have been developed. However, CNT-based strain sensors which show both high stretchability and sensitivity have not been reported. Herein, highly stretchable and sensitive strain sensors were fabricated by integrating single-walled carbon nanotubes (SWNTs) and nylon textiles via vacuum-assisted spray-layer-by-layer process. Our strain sensors had high sensitivity with 100 % tensile strain (gauge factor ~ 100). Cyclic tests confirmed that our strain sensors showed very robust and reliable characteristic. Moreover, our SWNTs-based strain sensors were easily and successfully integrated on human finger and knee to detect bending and walking motion. Our approach presented here might be route to preparing highly stretchable and sensitive strain sensors with providing new opportunity to realize practical wearable devices.

  • PDF

An Adaptive FEC Mechanism Using Crosslayer Approach to Enhance Quality of Video Transmission over 802.11 WLANs

  • Han, Long-Zhe;Park, Sung-Jun;Kang, Seung-Seok;In, Hoh-Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권3호
    • /
    • pp.341-357
    • /
    • 2010
  • Forward Error Correction (FEC) techniques have been adopted to overcome packet losses and to improve the quality of video delivery. The efficiency of the FEC has been significantly compromised, however, due to the characteristics of the wireless channel such as burst packet loss, channel fluctuation and lack of Quality of Service (QoS) support. We propose herein an Adaptive Cross-layer FEC mechanism (ACFEC) to enhance the quality of video streaming over 802.11 WLANs. Under the conventional approaches, FEC functions are implemented on the application layer, and required feedback information to calculate redundancy rates. Our proposed ACFEC mechanism, however, leverages the functionalities of different network layers. The Automatic Repeat reQuest (ARQ) function on the Media Access Control (MAC) layer can detect packet losses. Through cooperation with the User Datagram Protocol (UDP), the redundancy rates are adaptively controlled based on the packet loss information. The experiment results demonstrate that the ACFEC mechanism is able to adaptively adjust and control the redundancy rates and, thereby, to overcome both of temporary and persistent channel fluctuations. Consequently, the proposed mechanism, under various network conditions, performs better in recovery than the conventional methods, while generating a much less volume of redundant traffic.

신경망이론은 이용한 폴리우레탄 코팅포 촉감의 예측 (Using Neural Networks to Predict the Sense of Touch of Polyurethane Coated Fabrics)

  • 이정순;신혜원
    • 한국의류학회지
    • /
    • 제26권1호
    • /
    • pp.152-159
    • /
    • 2002
  • Neural networks are used to predict the sense of touch of polyurethane coated fabrics. In this study, we used the multi layer perceptron (MLP) neural networks in Neural Connection. The learning algorithm for neural networks is back-propagation algorithm. We used 29 polyurethane coated fabrics to train the neural networks and 4 samples to test the neural networks. Input variables are 17 mechanical properties measured with KES-FB system, and output variable is the sense of touch of polyurethane coated fabrics. The influence of MLF function, the number of hidden layers, and the number of hidden nodes on the prediction accuracy is investigated. The results were as follows: MLP function, the number of hidden layer and the number of hidden nodes have some influence on the prediction accuracy. In this work, tangent function, the architecture of the double hidden layers and the 24-12-hidden nodes has the best prediction accuracy with the lowest RMS error. Using the neural networks to predict the sense of touch of polyurethane coated fabrics has hotter prediction accuracy than regression approach used in our previous study.

Phoenics를 이용한 옷감의 종류 및 두께의 변화에 따른 열전달 특성의 수치 해석적 연구 (A Numerical Study on Natural Convection Between Skin and Fabrics)

  • 홍지명
    • 한국의류학회지
    • /
    • 제19권1호
    • /
    • pp.142-148
    • /
    • 1995
  • In this study, FVM (Finite Volume Method) which is one of the 2-dimensional numerical approach has been conducted to anticipate the temperature distribution between skin and clothes by the change of air temperature and fabric characteristics including fabric thickness. Several experimental works have been done to understand the thermal insulation effect (If fabrics on a human body by measuring the averaged temperature in the air layer between skin and clothes or by measuring the thermal resistance of fabrics. However, the formal method is inconvenient to measure the temperature distribution in the air layer to evaluate the insulation rate of the clothes on the skin because the real size of the clearance between skin and the clothes is too small to place the temperature sensor, and in the Tatter method the relationship between human body and the fabrics are ignored. However, the numerical method will be very effective and economical way to evaluate the insulation efficiency of clothes when the computational result is in the reliable range. As the result of this study, the temperature change in the sir layer between skin and clothes was linear to the fabric thickness and this result coincides with many previous experimental results. Moreover, it is possible to predict the optimum fabric thickness for the best thermal insulation in the air layer between skin and clothes.

  • PDF

Intrusion Detection for Black Hole and Gray Hole in MANETs

  • She, Chundong;Yi, Ping;Wang, Junfeng;Yang, Hongshen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권7호
    • /
    • pp.1721-1736
    • /
    • 2013
  • Black and gray hole attack is one kind of routing disturbing attacks and can bring great damage to the network. As a result, an efficient algorithm to detect black and gray attack is important. This paper demonstrate an adaptive approach to detecting black and gray hole attacks in ad hoc network based on a cross layer design. In network layer, we proposed a path-based method to overhear the next hop's action. This scheme does not send out extra control packets and saves the system resources of the detecting node. In MAC layer, a collision rate reporting system is established to estimate dynamic detecting threshold so as to lower the false positive rate under high network overload. We choose DSR protocol to test our algorithm and ns-2 as our simulation tool. Our experiment result verifies our theory: the average detection rate is above 90% and the false positive rate is below 10%. Moreover, the adaptive threshold strategy contributes to decrease the false positive rate.

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • 제12권4호
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

Stacked High Voltage Al Electrolytic Capacitors Using Zr-Al-O Composite Oxide

  • Zhang, Kaiqiang;Park, Sang-Shik
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.757-763
    • /
    • 2019
  • A stacked high-voltage (900 V) Al electrolytic capacitor made with ZrO2 coated anode foils, which has not been studied so far, is realized and the effects of Zr-Al-O composite layer on the electric properties are discussed. Etched Al foils coated with ZrO2 sol are anodized in 2-methyl-1,3-propanediol (MPD)-boric acid electrolyte. The anodized Al foils are assembled with stacked structure to prepare the capacitor. The capacitance and dissipation factor of the capacitor with ZrO2 coated anode foils increase by 41 % and decrease by 50 %, respectively, in comparison with those of Al anode foils. Zr-Al-O composite dielectric layer is formed between separate crystalline ZrO2 with high dielectric constant and amorphous Al2O3 with high ionic resistivity. This work suggests that the formation of a composite layer by coating valve metal oxide on etched Al foil surface and anodizing it in MPD-boric acid electrolyte is a promising approach for high voltage and volume efficiency of capacitors.