• Title/Summary/Keyword: layer 2

Search Result 19,001, Processing Time 0.054 seconds

FLUID DYNAMIC IMPLICATIONS OF THE INTERMITTENCY OF TURBULENT MOMENTUM TRANSPORT IN THE OCEANIC TURBULENT BOUNDARY LAYER (海洋 亂流境界層內 斷續性의 流體力學的 意義)

  • Chung, Jong Yul;Grosch, Chester E.
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.104-110
    • /
    • 1983
  • The Intermittent phenomena of the turbulent momentrm transports were closely examined in order to know the nature of intermittency and its fluid dynamic implications in the oceanic turbulent boundary layer. Also the connection between the observed intermittency and the bursting phenomenon was studied in detail. In this investigation, strong intermittency of turbulent momentum transports were found and the peak values of Reynolds stress (i,e., u'w') was about 408 times greater than average Reynolds stress (u',w') in the mid-layer and 270 times greater in the uppcrlayer of the turbulent boundary layer. These values are far greater than presently known maximum value, namely 30 times greater than the average Reynolds stress reported by Gordon (1974) and Heathersaw (1974). The distribution of Reynolds stress were extremely non-normal with the mean peak occurrence period of 5 minutes in the mid-layer and 1. 1 minutes in the upper layer of the turbulent boundary layer. Each teak lasted about 2 seconds in the mid-layer and 1.1 seconds in the upper layer of the turbulent boundary layer. Our dimensionless period of peak occurrence are found to be 33.3 in the mid-layer and 7.3 in the upper-layer, which are substantially larger than the often quoted values of 3.2-6.8 for the bursting period (Jackson, 1976). Some workers have interpreted that the intermittency phenomenon is the retlect of burst across their probe of the currentmeter (Gordon, 1974; Heathersaw, 1974). However, it was known that the burst can be found very near bottom boundary with smoothed bottom (i,e., friction Reynolds number$\leq$3,000) in the laboratory experiments. Through this investigation, it was found that the intermittent strength of the turbulent momentum transports does not conclusively indicate the characteristic feature of the boundary layer turbulence with a rough bottom (i,e., friction Reynolds number$\geq$10$\^$5/).

  • PDF

The 1/f Noise Analysis of 3D SONOS Multi Layer Flash Memory Devices Fabricated on Nitride or Oxide Layer (산화막과 질화막 위에 제작된 3D SONOS 다층 구조 플래시 메모리소자의 1/f 잡음 특성 분석)

  • Lee, Sang-Youl;Oh, Jae-Sub;Yang, Seung-Dong;Jeong, Kwang-Seok;Yun, Ho-Jin;Kim, Yu-Mi;Lee, Hi-Deok;Lee, Ga-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.85-90
    • /
    • 2012
  • In this paper, we compared and analyzed 3D silicon-oxide-nitride-oxide-silicon (SONOS) multi layer flash memory devices fabricated on nitride or oxide layer, respectively. The device fabricated on nitride layer has inferior electrical properties than that fabricated on oxide layer. However, the device on nitride layer has faster program / erase speed (P/E speed) than that on the oxide layer, although having inferior electrical performance. Afterwards, to find out the reason why the device on nitride has faster P/E speed, 1/f noise analysis of both devices is investigated. From gate bias dependance, both devices follow the mobility fluctuation model which results from the lattice scattering and defects in the channel layer. In addition, the device on nitride with better memory characteristics has higher normalized drain current noise power spectral density ($S_{ID}/I^2_D$>), which means that it has more traps and defects in the channel layer. The apparent hooge's noise parameter (${\alpha}_{app}$) to represent the grain boundary trap density and the height of grain boundary potential barrier is considered. The device on nitride has higher ${\alpha}_{app}$ values, which can be explained due to more grain boundary traps. Therefore, the reason why the devices on nitride and oxide have a different P/E speed can be explained due to the trapping/de-trapping of free carriers into more grain boundary trap sites in channel layer.

Neurophysiology of Amplification and Mutation of Poetic Sense: Focusing on Hwang Jin-yi's Sijo "I do not untrustworthy"

  • Park, In-Kwa
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.2
    • /
    • pp.100-106
    • /
    • 2018
  • Sometimes, literary therapy is to create an abscission layer at the mind and remove the signifier of love, by the abscission layer. The purpose of this study is to reveal the mechanism of literary therapy by mutation in human-created sentences and to activate literary therapy. In Gosijo, the abscission layer of Seo Gyeongdok's mind is present in the layer of the "falling leaf" of the his Sijo's last sentence, and the abscission layer of Hwang Jin-yi's mind exists in the layer of the "falling leaf" of the her Sijo's last sentence. The "falling leaf" created by the abscission layer of Seo Gyeongdok's sentence acts as an action potential to the nervous system of Hwang Jin-yi. In Hwang Jin-yi's Sijo, the abscission layer is also activated, forming a "leaf". Hwang Jin-yi's Sijo constructs a new sensory layer that is extended and mutated more than the meaning of space between lines of Seo Gyeongdok's Sijo. In her Sijo, Hwang Jin-yi twists and twists Seo Gyeongdok's sentences to squeeze the sound. She accepts the Seo Gyeongdok's sentences and twists in the first sentence and twists out of the second sentence once more to produce the mutation in the last sentence. As a result of her sentence twist, Seo Kyung-duk's visual sense of "falling leaf" is mutated into a "falling leaf's sound" of auditory sense. This mutation process works as a healing mechanism in the human body. If this study will continue in the future, it will be possible to activate literary therapy by Sijo.

Analysis of Lamb wave propagation on a plate using the spectral element method (스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Choi, Kwang-Kyu;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF

Performance Comparison of CuPc, Tetracene, Pentacene-based Photovoltaic Cells with PIN Structures

  • Hwang, Jong-Won;Kang, Yong-Su;Park, Seong-Hui;Lee, Hye-Hyun;Jo, Young-Ran;Choe, Young-Son
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.311-312
    • /
    • 2010
  • The fabricated photovoltaic cells based on PIN heterojunctions, in this study, have a structure of ITO/poly(3, 4-ethylenedioxythiophene)-poly(styrenesulfonate)(PEDOT:PSS)/donor/donor:C60(10nm)/C60(35nm)/2, 9-dimethyl-4, 7-diphenyl-1, 10-phenanthroline(8nm)/Al(100nm). The thicknesses of an active layer(donor:C60), an electron transport layer(C60), and hole/exciton blocking layer(BCP) were fixed in the organic photovoltaic cells. We investigated the performance characteristics of the PIN organic photovoltaic cells with copper phthalocyanine(CuPc), tetracene and pentacene as a hole transport layer. Discussion on the photovoltaic cells with CuPc, tetracene and pentacene as a hole transport layer is focussed on the dependency of the power conversion efficiency on the deposition rate and thickness of hole transport layer. The device performance characteristics are elucidated from open-circuit-voltage(Voc), short-circuit-current(Jsc), fill factor(FF), and power conversion efficiency($\eta$). As the deposition rate of donor is reduced, the power conversion efficiency is enhanced by increased short-circuit-current(Jsc). The CuPc-based PIN photovoltaic cell has the limited dependency of power conversion efficiency on the thickness of hole transport layer because of relatively short exciton diffusion length. The photovoltaic cell using tetracene as a hole transport layer, which has relatively long diffusion length, has low efficiency. The maximum power conversion efficiencies of CuPc, tetracene, and pentacene-based photovoltaic cells with optimized deposition rate and thickness of hole transport layer have been achieved to 1.63%, 1.33% and 2.15%, respectively. The photovoltaic cell using pentacene as a hole transport layer showed the highest efficiency because of dramatically enhanced Jsc due to long diffusion length and strong thickness dependence.

  • PDF

Effect of Underlying Layer Modeling on Curling Behavior of Concrete Slabs on Grade under Environmental Loads (하부층 모델링에 따른 지반 위 콘크리트 슬래브의 환경하중 하의 컬링 거동 분석)

  • Kim, Seong-Min;Shim, Jae-Soo;Yoon, Dong-Joo
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.209-220
    • /
    • 2008
  • This paper presents the differences in the analysis results according to the underlying layer modeling methods when analyzing the curling behaviors of the concrete slabs on grade under environmental loads. The models of the slab on grade system considered in this study included a three-dimensional(3D) model, a model composed of 3D slab and springs for underlying layers, and a model composed of 2D slab and springs for underlying layers. First, when the underlying layer consisted of one layer, the curling behaviors according to the different models were compared. Then, the underlying layers that consisted of two different materials and thicknesses were considered. The results of this study showed that the tensionless spring model for the underlying layer gave very accurate results when the underlying layer consisted of one layer. However, when the underlying layers consisted of two layers, the spring model for the underlying layers could overestimate the displacements and underestimate the maximum stress with a large elastic modulus of upper underlying layer, a small elastic modulus of under underlying layer, and thick underlying layers.

  • PDF

Analysis of Electric Shock Hazards due to Touch Current According to Soil Resistivity Ratio in Two-layer Earth Model (2층 대지모델에서 대지저항률의 비율에 따른 접촉전류에 의한 감전의 위험성 분석)

  • Lee, Bok-Hee;Kim, Tae-Ki;Cho, Yong-Seung;Choi, Jong-Hyuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.68-74
    • /
    • 2011
  • The touch or step voltages which exist in the vicinity of a grounding electrode are closely related to the earth structure and resistivity and the ground current. The grounding design approach is required to determine the grounding electrode location where the hazardous voltages are minimized. In this paper, in order to propose a method of mitigating the electric shock hazards caused by the ground surface potential rise in the vicinity of a counterpoise, the hazards relevant to touch voltage were evaluated as a function of the soil resistivity ratio $\rho_2/\rho_1$ for several practical values of two-layer earth structures. The touch voltage and current on the ground surface just above the test electrode are calculated with CDEGS program. As a consequence, it was found that burying a grounding electrode in the soil with low resistivity is effective to reduce the electric shock hazards. In the case that the bottom layer soil where a counterpoise is buried has lower resistivity than the upper layer soil, when the upper layer soil resistivity is increased, the surface potential is slightly raised, but the current through the human body is reduced with increasing the upper layer soil resistivity because of the greater contact resistance between the earth surface and the feet. The electric shock hazard in the vicinity of grounding electrodes is closely related to soil structure and resistivity and are reduced with increasing the ration of the upper layer resistivity to the bottom layer resistivity in two-layer soil.

Coating Properties of Single and Multi-Layer Graphene Oxide on a Polystyrene Surface (산화그래핀 층수에 따른 폴리스타이렌 표면 코팅 특성)

  • Lee, Jihoon;Park, Jaebum;Park, Danbi;Huh, Jeung Soo;Lim, Jeong Ok
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.420-426
    • /
    • 2021
  • Graphene, a new material with various advantageous properties, has been actively used in various fields in recent years. Applications of graphene oxide are increasing in combination with other materials due to the different properties of graphene oxide, depending on the number of single and multiple layers of graphene. In this study, single-layer graphene oxide and multi-layer graphene oxide are spray coated on polystyrene, and the physicochemical properties of the coated surfaces are characterized using SEM, Raman spectroscopy, AFM, UV-Vis spectrophotometry, and contact angle measurements. In single-layer graphene oxide, particles of 20 ㎛ are observed, whereas a 2D peak is less often observed, and the difference in surface height increases according to the amount of graphene oxide. Adhesion increases with an increase in graphene oxide up to 0.375 mg, but decreases at 0.75 mg. In multi-layer graphene oxide, particles of 5 ㎛ are observed, as well as a 2D peak. According to the amount of graphene oxide, the height difference of the surface increases and the adhesive strength decreases. Both materials are hydrophilic, but single-layer graphene oxide has a hydrophilicity higher than that of multi-layer graphene oxide. We believe that multi-layer graphene oxide and single-layer graphene oxide can be implemented based on the characteristics that make them suitable for application.

Optimization of $p^+$ seeding layer for thin film silicon solar cell by liquid phase epitaxy

  • Lee, Eun-Joo;Lee, Soo-Hong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.260-262
    • /
    • 2005
  • Thickness optimization of heavily doped p-type seeding layer was studied to improve performance of thin film silicon solar cell. We used liquid phase epitaxy (LPE) to grow active layer of $25{\mu}m$ thickness on $p^+$ seeding layer. The cells with $p^+$ seeding layer of $10{\mu}m\;to\;50{\mu}m$ thickness were fabricated. The highest efficiency of a cell is 12.95%, with $V_{oc}=633mV,\;J_{sc}=26.5mA/cm^2$, FF = 77.15%. The $p^+$ seeding layer of the cell is $20{\mu}m$ thick. As thicker seeding layer than $20{\mu}m$, the performance of the cell was degraded. The results demonstrate that the part of the recombination current is due to the heavily doped seeding layer. Thickness of heavily doped p-type seeding layer was optimized to $20{\mu}m$. The performance of solar cell is expected to improve with the incorporation of light trapping as texturing and AR coating.

Optimization of microcrystaliline silicon thin film solar cells using simulation (i-layer 두께와 back reflect layer 유무가 미세결정 실리콘 박막태양전지에 미치는 영향)

  • Park, Seung-Man;Lee, Young-Suk;Jung, Sung-Wook;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.437-437
    • /
    • 2009
  • 현재 상용화되어 있는 결정질 태양전지의 경우 높은 실리콘 가격으로 인해 저가화에 어려움을 격고 있다. 따라서 태양전지 저가화의 한 방법으로 박막태양전지가 주목을 받고 있다. P-I-N 구조의 박막태양전지에서 I-layer 각 층의 thickness, activation energy, energy bandgap은 고효율 달성을 위한 중요한 요소이다. 본 논문에서는 박막태양전지 P-I-N layer의 가변을 통하여 고효율을 달성하기 위한 simulation을 수행하였다. 가변 조건으로는 p-layer의 thickness, activation energy 그리고 energy bandgap을 단계별로 변화시켰고 i-layer는 thickness를 n-layer는 thickness와 activation energy를 가변하여 최적의 조건을 찾아 분석하였다. 최종 simulation 결과 p-layer의 thickness 5nm, activation energy 0.3eV 그리고 energy bandgap 1.8eV에서, i-layer thickness 400nm, n-layer thickness 30nm, activation energy 0.2eV에서 최고 효율 11.08%를 달성하였다.

  • PDF