• Title/Summary/Keyword: layer 2

Search Result 19,001, Processing Time 0.047 seconds

LCAO basis DFT 계산을 통한 전이금속 치환에 따른 MoS2 layer 의 수소 흡착에너지 의존성 연구

  • Gang, Seong-Mo
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.270-272
    • /
    • 2016
  • 제일원리 전자구조 계산을 통하여 현재 활발하게 연구가 진행되고 있는 MoS2 layer에 다양한 전이금속 물질을 치환하여 수소 흡착에너지를 구해보고, 수소 발생 촉매로서 적합한 구조를 구해 보았다. 또한 계산된 density of state의 형태를 분석하여 수소발생반응의 가능성을 알아보았다. 계산 결과, MoS2 layer의 경우 ground states에서 약 2.53eV의 흡착에너지를 가졌고, Ge과 Ir을 치환한 구조에 경우에 대해서는 각각 0.02eV와 -0.12eV로 계산되었다.

  • PDF

Characterization of Chemical Bath Deposited ZnS Thin Films and Its application to $Cu(InGa)Se_2$ Solar Cells (용액성장법에 의한 황화아연 박막층 분석 및 이의 CIGS 태양전지로의 응용)

  • Shin, Dong-Hyeop;Larina, Liudmila;Yun, Jae-Ho;Ahn, Byung-Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.138-138
    • /
    • 2009
  • Recently, thin-film solar cells of Cu(In,Ga)$Se_2$(CIGS) have reached a high level of performance, which has resulted in a 19.9%-efficient device. These conventional devices were typically fabricated using chemical bath deposited CdS buffer layer between the CIGS absorber layer and ZnO window layer. However, the short wavelength response of CIGS solar cell is limited by narrow CdS band gap of about 2.42 eV. Taking into consideration the environmental aspect, the toxic Cd element should be replaced by a different material. It is why during last decades many efforts have been provided to achieve high efficiency Cd-free CIGS solar cells. In order to alternate CdS buffer layer, ZnS buffer layer is grown by using chemical bath deposition(CBD) technique. The thickness and chemical composition of ZnS buffer layer can be conveniently by varying the CBD processing parameters. The processing parameters were optimized to match band gap of ZnS films to the solar spectrum and exclude the creation of morphology defects. Optimized ZnS buffer layer showed higher optical transmittance than conventional thick-CdS buffer layer at the short wavelength below ~520 nm. Then, chemically deposited ZnS buffer layer was applied to CIGS solar cell as a alternative for the standard CdS/CIGS device configuration. This CIGS solar cells were characterized by current-voltage and quantum efficiency measurement.

  • PDF

A study of panoramic focal trough for the six-year-old child (6세 아동을 위한 파노라마방사선사진 상층의 연구)

  • Kim Sang-Yeon;Cho Hang-Moon;Han Jin-Woo;Lee Sul-Mi
    • Imaging Science in Dentistry
    • /
    • v.34 no.2
    • /
    • pp.63-67
    • /
    • 2004
  • Purpose: To make a focal trough (image layer) for an average maxillary dental arch of 6-year-old korean in panoramic radiography. Materials and Methods : Phantom for the maxillary dental arch was designed using intercanine width, intermolar width, tooth size, and interdental spacing to record the data of 6-year-old child. The characteristics of pre-corrected panoramic machine (for adult) was evaluated using the phantom, resolution test pattern for margin of the image layer, and metal ball for the center of the image layer. Panoramic image layer of the child was developed by means of decreasing the speed of film-cassette and positioning the phantom backwards, and then the characteristics of post-corrected panoramic machine (for child) were reevaluated. Results: At post-corrected panoramic image layer, beam projection angles at all interdental areas increased for about 2.6-3.8°, the position of the image layer was shifted toward the rotation center for about 2.5 mm at the deciduous central incisior area. The width of image layer decreased at all areas. Conclusion : Increased beam projection angle will reduce the disadvantage of tooth overlap, and the same form between the center of the image layer and dental arch will improve image resolution.

  • PDF

Vegetation Structure of Natural Taxus cuspidata Forests in Mt. SouBaik (소백산의 천연생 주목나무림 식생구조)

  • 장용석;신창섭;양덕춘;정동준
    • Korean Journal of Plant Resources
    • /
    • v.17 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • This study was carried out to investigate the structural characteristics of Taxus cuspidate communities in Mt. DuckYoo. The vegetation was consisted of 20 species in the T$_1$(tree) layer, 26 species in the T$_2$(subtall tree) layer, 26species in S(shrub) layer, and 56 species in the H(herb) layer. The dominant species of Mt. Duckyoo was Taxus cuspidata in the T$_1$ Layer, Acer tschonoskii var. rubripes in the T$_2$ Layer, Tripterygium regelii and Acer tschonoskii var. rubripes in the S Layer and Sasa borealis in the H Layer. According to the diameter distribution of high ranking five species in T$_1$, T$_2$ layer at natural Taxus cuspidata communities, these forests may be gradually replaced by Quercus mongolica, Tripterygium regelii. The composition of biological type was Ph-D$_1$-R$\sub$5/-e.

Vegetation Structure of Natural Taxus cuspidata Forests in Mt. DuckYoo (덕유산의 천연생 주목나무림 식생구조)

  • 장용석;양덕춘;정동준
    • Korean Journal of Plant Resources
    • /
    • v.17 no.1
    • /
    • pp.58-66
    • /
    • 2004
  • This study was carried out to investigate the structural characteristics of Taxus cuspidate communities in Mt. DuckYoo. The vegetation was consisted of 20 species in the T$_1$(tree) layer, 26 species in the T$_2$(subtall tree) layer, 26species in S(shrub) layer, and 56 species in the H(herb) layer. The dominant species of Mt. Duckyoo was Taxus cuspidata in the T$_1$ Layer, Acer tschonoskii var. rubripes in the T$_2$ Layer, Tripterygium regelii and Acer tschonoskii var. rubripes in the S Layer and Sasa borealis in the H Layer. According to the diameter distribution of high ranking five species in T$_1$, T$_2$ layer at natural Taxus cuspidata communities, these forests may be gradually replaced by Quercus mongolica, Tripterygium regelii. The composition of biological type was Ph-D$_1$-R$\_$5/-e.

A MEIS Study on Ge Eppitaxial Growth on Si(001) with dynamically supplied Atomic Hydrogen

  • Ha, Yong-Ho;Kahng, Se-Jong;Kim, Se-Hun;Kuk, Young;Kim, Hyung-Kyung;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.156-157
    • /
    • 1998
  • It is a diffcult and challenging pproblem to control the growth of eppitaxial films. Heteroeppitaxy is esppecially idfficult because of the lattice mismatch between sub-strate and depposited layers. This mismatch leads usually to a three dimensional(3D) island growth. But the use of surfactants such as As, Sb, and Bi can be beneficial in obtaining high quality heteroeppitaxial films. In this study medium energy ion scattering sppectroscoppy(MEIS) was used in order to reveal the growth mode of Ge on Si(001) and the strain of depposited film without and with dynamically supplied atomic hydrogen at the growth thempperature of 35$0^{\circ}C$. It was ppossible to control the growth mode from layer-by-layer followed by 3D island to layer-by-layer by controlling the hydrogen flux. In the absent of hydro-gen the film grows in the layer-by-layer mode within the critical thickness(about 3ML) and the 3D island formation is followed(Fig1). The 3D island formation is suppressed by introducing hydrogen resulting in layer-by-layer growth beyond the critical thickness(Fig2) We measured angular shift of blocking dipp in order to obtain the structural information on the thin films. In the ppressence of atomic hydrogen the blocking 야 is shifted toward higher scattering angle about 1。. That means the film is distorted tetragonally and strained therefore(Fig4) In other case the shift of blocking dipp at 3ML is almost same as pprevious case. But above the critical thickness the pposition of blocking dipp is similar to that of Si bulk(Fig3). It means the films is relaxed from the first layer. There is 4.2% lattice mismatch between Ge and Si. That mismatch results in about 2。 shift of blocking dipp. We measured about 1。 shift. This fact could be due to the intermixing of Ge and Si. This expperimental results are consistent with Vegard's law which says that the lattice constant of alloys is linear combination of the lattic constants of the ppure materials.

  • PDF

Effect of Carbon Fiber Layer on Electrochemical Properties of Activated Carbon Electrode

  • Jong kyu Back;Jihyeon Ryu;Yong-Ho Park;Ick-Jun Kim;Sunhye Yang
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.184-193
    • /
    • 2023
  • This study investigates the effects of a carbon fiber layer formed on the surface of an etched aluminum current collector on the electrochemical properties of the activated carbon electrodes for an electric double layer capacitor. A particle size analyzer, field-emission SEM, and nitrogen adsorption/desorption isotherm analyzer are employed to analyze the structure of the carbon fiber layer. The electric and electrochemical properties of the activated carbon electrodes using a carbon fiber layer are evaluated using an electrode resistance meter and a charge-discharge tester, respectively. To uniformly coat the surface with carbon fiber, we applied a planetary mill process, adjusted the particle size, and prepared the carbon paste by dispersing in a binder. Subsequently, the carbon paste was coated on the surface of the etched aluminum current collector to form the carbon under layer, after which an activated carbon slurry was coated to form the electrodes. Based on the results, the interface resistance of the EDLC cell made of the current collector with the carbon fiber layer was reduced compared to the cell using the pristine current collector. The interfacial resistance decreased from 0.0143 Ω·cm2 to a maximum of 0.0077 Ω·cm2. And degradation reactions of the activated carbon electrodes are suppressed in the 3.3 V floating test. We infer that it is because the improved electric network of the carbon fiber layer coated on the current collector surface enhanced the electron collection and interfacial diffusion while protecting the surface of the cathode etched aluminum; thereby suppressing the formation of Al-F compounds.

Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells (결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구)

  • Song, Se Young;Kang, Min Gu;Song, Hee-Eun;Chang, Hyo Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.10
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

Effect of CeO$_2$ buffer layer on the crystallization of YBCO thin film on Hastelloy substrate (비정질 금속 기판상에 증착된 YBCO 박막의 결정성에 대한 CEO$_2$ 완충막의 효과)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.392-396
    • /
    • 1999
  • Superconducting YBa$_2Cu_3O_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy(Ni-Cr-Mo alloys) with CeO$_2$ buffer layer in-situ by pulsed laser deposition in a multi-target processing chamber. To apply superconducting property on power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to grow the YBCO films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting overlayers and non-crystallization of YBCO on amorphous substrate. It is necessary to use a buffer layer to overcome the difficulties. We have chosen CeO$_2$ as a buffer layer which has cubic structure of 5.41 ${\AA}$ lattice parameter and only 0.2% of lattice mismatch with 3.82 ${\AA}$ of a-axis lattice parameter of YBCO on [110] direction of CeO$_2$ In order to enhance the crystallization of YBCO films on metallic substrates, we deposited CeO$_2$ buffer layers with varying temperature and 02 pressure. By XRD, it is observed that dominated film orientation is strongly depending on the deposition temperature of CeO$_2$ layer. The dominated orientation of CeO$_2$ buffer layer is changed from (200) to(111) by increasing the deposition temperature and this transition affects the crystallization of YBCO superconducting film on CeO$_2$ buffered Hastelloy.

  • PDF

Analysis of Heating Characteristics Using Aluminum Multi-Layer Curtain for Protected Horticulture Greenhouses

  • Park, Bum-Soon;Kang, Tae-Hwan;Han, Chung-Su
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.193-200
    • /
    • 2015
  • Purpose: The purpose of this study was to investigate the energy saving effects and characteristics of plant growth in a greenhouse with an aluminum multi-layer curtain compared to a greenhouse with non-woven fabric. Method: The dimensions of both greenhouses $43m{\times}3.6m{\times}8m(L{\times}H{\times}W)$, and both used hot air heater systems for maintaining a constant temperature $15^{\circ}C$. Heating characteristics such as solar intensity, inside and ambient temperatures, and fuel consumption were measured and analyzed. Results: The changes of average temperature of both greenhouses during a 15-days (December 06 - 20) showed approximately $26^{\circ}C$ at around 2 pm when the ambient temperature was highest. The greenhouses were set by the heater to keep a temperature of $15^{\circ}C$ from 4 pm to 8 am the following day. The average heat loss (for 15 days) from the greenhouse with an aluminum multi-layer curtain was $161.2-268.4kJ/m^2{\cdot}h$ during the daytime and $152.3-198.1kJ/m^2{\cdot}h$ during the nighttime. The average heat loss (for 15 days) from the greenhouse with non-woven fabric was $155.7-258.9kJ/m^2{\cdot}h$ during the daytime and $144.9-207.0kJ/m^2{\cdot}h$ during the nighttime. The total heat loss (for one day) from the non-woven fabric system was $7,960kJ/m^2$($2,876kJ/m^2$ during the daytime, $5,084kJ/m^2$ during the nighttime). The heat supply over 36 days for the non-woven fabric system was higher than the aluminum multi-layer curtain system by $616.3-65,079.4kJ/m^2$. Conclusions: These results suggest that a greenhouse with an aluminum multi-layer curtain could save energy usage by 35% over a greenhouse with non-woven fabric.