• Title/Summary/Keyword: layer 2

Search Result 19,001, Processing Time 0.05 seconds

Buffer Effect of Copper Phthalocyanine(CuPC) (카퍼 프탈로시아닌의 완충효과)

  • Kim, Jung-Hyun;Shin, Dong-Muyng;Shon, Byoung-Choung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.307-311
    • /
    • 1999
  • Interfacial properties of electrode and organic thin layer is one of the most important factor in performing a Light Emitting Diodes(LED). Phthalocyanine copper was used as a buffer layer to improve interface characteristic, so that device efficiency was improved. In this study, LEDs were fabricated as like structures of Indium-Tin-Oxide (ITO) / N,N' -Diphenyl-N,N'-di(m-tolyl)-benzidine (TPD) / 8-Hydroxyquinoline aluminum(Alq) / Aluminum(Al) and Indium-Tin-Oxide(ITO) / N,N'-Diphenyl-N,N' -di(m-tolyl)-benzidine(TPD) / 2-(4-Biphenylyl)-5(4-tert-butyl-phenyl)-1,3,4-oxadiazole(PBD) / Aluminum(Al). In these devices, CuPC was layered at electrode/organic layer interface. As position is changing and thickness is changing, devices showed characteristic luminescence efficiency and luminescence inensity respectively. We showed in this study that luminescence efficiency was improved with CuPC layer in LEDs. The efficiency of device with layer CuPC is higher than that of 2 layer CuPC. However, the luminescence of 2 layer CuPC device got higher value.

A Study on the Cold Reserving Performance of PET Bottle with Shrinkage Film

  • Hong, Dae Gi;Lyu, Min Young
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.123-127
    • /
    • 2019
  • Shrink film is currently being used for plastic container lavels to avoid the use of glue. Polyethylene terephthalate (PET) bottle lavels also use shrink films in the same PET materials for easy recycling of PET bottles. An air layer is generated between the shrink film and PET bottle surface due to the bent shape of the bottle surface. This air layer can insulate external heat, as air has a relatively lower thermal conductivity. In this study, the insulation property of the air layer was examined by computer simulation. Two PET bottle models were used, one with and the other without an air layer between the PET bottle surface and lavel. The two bottle models were filled with cold liquid and exposed to room temperature for 6 h, and the temperatures of the contents were then compared. The results showed that the temperature of the contents in the bottle with the air layer was lower than that without the air layer by at least $2^{\circ}C$. This study suggests an effective lavel design of PET bottles while ensuring that the temperature of the bottle contents is maintained.

A way Analyzing Oxide Layer on an Irradiated CANDU-PHWR Pressure Tube Using an EPMA and X-ray Image Mapping

  • Jung, Yang Hong;Kim, Hee Moon
    • Corrosion Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.118-128
    • /
    • 2021
  • The oxide layer in samples taken from an irradiated Zr-2.5Nb pressure tube from a CANDU-PHWR reactor was analyzed using electron probe microanalysis (EPMA). The examined tube had been exposed to temperatures ranging from 264 to 306 ℃ and a neutron fluence of 8.9 × 1021 n/cm2 (E > 1 MeV) for the maximum 10 effective full-power years in a nuclear power plant. Measuring oxide layer thickness generally employs optical microscopy. However, in this study, analysis of the oxide layer from the irradiated pressure tube components was undertaken through X-ray image mapping obtained using EPMA. The oxide layer characteristics were analyzed by X-ray image mapping with 256 × 256 pixels using EPMA. In addition, the slope of the oxide layer was measured for each location. A particular advantage of this study was that backscattered electrons and X-ray image mapping were obtained at a magnification of 9,000 when 20 kV volts and 30 uA of current were applied to radiation-shielded EPMA. The results of this study should usefully contribute to the study of the oxide layer properties of various types of metallic materials irradiated by high radiation in nuclear power plants.

Effect of organic solvents on catalyst structure of PEM fuel cell electrode fabricated via electrospray deposition

  • Koh, Bum-Soo;Yi, Sung-Chul
    • Journal of Ceramic Processing Research
    • /
    • v.18 no.11
    • /
    • pp.810-814
    • /
    • 2017
  • Proton exchange membrane fuel cells (PEMFCs) are some of the most efficient electrochemical energy sources for transportation applications because of their clean, green, and high efficiency characteristics. The optimization of catalyst layer morphology is considered a feasible approach to achieve high performance of PEMFC membrane electrode assembly (MEA). In this work, we studied the effect of the solvent on the catalyst layer of PEMFC MEAs fabricated using the electrostatic spray deposition method. The catalyst ink comprised of Pt/C, a Nafion ionomer, and a solvent. Two types of solvent were used: isopropyl alcohol (IPA) and dimethylformamide (DMF). Compared with the catalyst layer prepared using IPA-based ink, the catalyst layer prepared with DMF-based ink had a dense structure because the DMF dispersed the Pt/C-Nafion agglomerates smaller and more homogeneously. The size distribution of the agglomerates in catalyst ink was confirmed through Dynamic Light Scattering (DLS) and the microstructure of the catalyst layer was compared using field emission scanning electron microscopy (FE-SEM). In addition, the electrochemical investigation was performed to evaluate the solvent effect on the fuel cell performance. The catalyst layer prepared with DMF-based ink significantly enhanced the cell performance (1.2 A cm-2 at 0.5 V) compared with that fabricated using IPA-based ink (0.5 A cm-2 at 0.5 V) due to the better dispersion and uniform agglomeration on the catalyst layer.

Magnetotransport Properties of Co-Fe/Al-O/Co-Fe Tunnel Junctions Oxidized with Microwave Excited Plasma

  • Nishikawa, Kazuhiro;Orata, Satoshi;Shoyama, Toshihiro;Cho, Wan-Sick;Yoon, Tae-Sick;Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.63-71
    • /
    • 2002
  • Three fabrication techniques for forming thin barrier layer with uniform thickness and large barrier height in magnetic tunnel junction (MTJ) are discussed. First, the effect of immiscible element addition to Cu layer, a high conducting layer generally placed under the MTJ, is investigated in order to reduce the surface roughness of the bottom ferromagnetic layer, on which the barrier is formed. The Ag addition to the Cu layer successfully realizes the smooth surface of the ferromagnetic layer because of the suppression of the grain growth of Cu. Second, a new plasma source, characterized as low electron energy of 1 eV and high density of $10^{12}$ $cm^{-3}$, is introduced to the Al oxidation process in MTJ fabrication in order to reduce damages to the barrier layer by the ion-bombardment. The magnetotransport properties of the MTJs are investigated as a function of the annealing temperature. As a peculiar feature, the monotonous decrease of resistance area product (RA) is observed with increasing the annealing temperature. The decrease of the RA is due to the decrease of the effective barrier width. Third, the influence of the mixed inert gas species for plasma oxidization process of metallic Al layer on the tunnel magnetoresistance (TMR) was investigated. By the use of Kr-O$_2$ plasma for Al oxidation process, a 58.8 % of MR ratio was obtained at room temperature after annealing the junction at $300{^{\circ}C}$, while the achieved TMR ratio of the MTJ fabricated with usual Ar-$0_2$ plasma remained 48.4%. A faster oxidization rate of the Al layer by using Kr-O$_2$ plasma is a possible cause to prevent the over oxidization of Al layer and to realize a large magnetoresistance.

Passivation Layer (Thermosetting Film)가 형성된 유기박막 트랜지스터의전기적 특성 변화에 대한 연구

  • Seong, Si-Hyeon;Kim, Gyo-Hyeok;Jeong, Il-Seop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.380-380
    • /
    • 2013
  • 본 논문에서는 외기 환경 요인 중에서 H2O와 O2의 영향으로 성능이 저하되는 유기박막트랜지스터(OTFT)의 수명시간 향상을 위하여 필요한 passivation layer의 효과에 대하여 알아 보았다. OTFT에 기존의 액상 공정이나 증착 공정으로 단일 passivation layer또는 다층 passivation layer를 형성하는 방식과는 다르게 향후에 산업 전반에 적용이 기대되는 것을 고려하여 제작 공정의 간편성을 위하여 film 형태로 되어 있는 열경화성 epoxy resin film으로 passivation layer를 구현하는 방법을 사용하여 OTFT의 storage stability를 평가하였다. passivation layer가 없는 OTFT와 열경화성 epoxy resin film으로 passivation된 OTFT의 전기적 특성이 서로 비교 평가되었으며 또한 30일 동안 온도 $25^{\circ}C$ 상대습도 40%의 환경을 갖는 Desicator 안에서 소자를 보관하여 시간에 따른 전기적 특성 변화를 검증하여 epoxy resin film의 passivation layer으로의 적용가능성을 검증하였다. 결과적으로 30일 후의 passivation layer가 없는 OTFT의 전기적 특성은 매우 낮게 떨어진 반면에 epoxy resin film으로 passivation layer가 구현된 OTFT의 mobility는 $0.060cm^2$/Vs, VT는 -0.18 V, on/off ratio는 $3.7{\times}10^3$으로 초기의 소자 특성이 잘 유지되는 결과를 얻었다. OTFT는 Flexible한 polyethersulfone (PES)기판에 게이트 전극이 하부에 있는 Bottom gate 구조로 제작되었고 채널 형성을 위한 유기반도체 재료로 6,13-bis (triisopropylsilylethynyl) (TIPS) pentacene이 사용되었고 spin coating된 Poly-4-vinylphenol (PVP)가 게이트 절연체로 사용되었다. 이때 Au전극은 Shadow mask를 이용하여 증착하였다. 또한 OTFT의 채널 길이 $100{\mu}m$, 채널 폭 $300{\mu}m$의 영역에 Drop casting법을 사용하여 채널을 형성하였다. 물리적 특성은 scanning electron microscopy (SEM), scanning probe microscopy (SPM), x-ray diffraction (XRD)를 사용하여 분석하였고, 전기적 특성은 Keithley-4200을 사용하여 추출하였다.

  • PDF

Ultrasturctural Study on Nectar Secretion from Extrafloral Nectary of Prunus yedoensis Matsumura (왕벚나무 화외밀선의 당액 분비에 관한 미세구조적 연구)

  • 정병갑
    • Journal of Plant Biology
    • /
    • v.35 no.2
    • /
    • pp.143-153
    • /
    • 1992
  • Nectar secretion from extrafloral nectary cells of Prunus yedoensis was examined by light and electron microscopy. Nectaries were composed of two or three layers of secretory cells and one layer of subsectretory cells. Vascular bundles in the petioles were connected to those of the subsectretory cell layer. Secretory cells had a number of mitochondria with poorly developed cristae. Plastids had little thylakoids and small vesicles, about 0.2 to 0.3 mm in diameter; however, no plastids had starch grains. Calcium oxalate crystals and plasmodesmata were frequently observed in the subsectretory and secretory cells, respectively. And nectar substances were observed in phloem of petiole, subsectretory, and secretory cells of the secretory gland. These results suggested that the nectar moved by symplastic transport through the plasmodesmata. On the other hand, the nectar droplets were observed in the secretory cell walls. in the cuticular layer just beyond of the former, and on the outer surface of the cuticular layer: such observations indicated that a apoplastic movement was involved in the final step of the nectar secretion. Cellular components related to the nectar transport, such as plasma membrane, cell wall and cuticle were not destroyed but intact: it was interpreted as a eccrine secretion.retion.

  • PDF

3D conversion of 2D video using depth layer partition (Depth layer partition을 이용한 2D 동영상의 3D 변환 기법)

  • Kim, Su-Dong;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • In this paper, we propose a 3D conversion algorithm of 2D video using depth layer partition method. In the proposed algorithm, we first set frame groups using cut detection algorithm. Each divided frame groups will reduce the possibility of error propagation in the process of motion estimation. Depth image generation is the core technique in 2D/3D conversion algorithm. Therefore, we use two depth map generation algorithms. In the first, segmentation and motion information are used, and in the other, edge directional histogram is used. After applying depth layer partition algorithm which separates objects(foreground) and the background from the original image, the extracted two depth maps are properly merged. Through experiments, we verify that the proposed algorithm generates reliable depth map and good conversion results.

Improvement in Capacitor Characteristics of Titanium Dioxide Film with Surface Plasma Treatment (플라즈마 표면 처리를 이용한 TiO2 MOS 커패시터의 특성 개선)

  • Shin, Donghyuk;Cho, Hyelim;Park, Seran;Oh, Hoonjung;Ko, Dae-Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2019
  • Titanium dioxide ($TiO_2$) is a promising dielectric material in the semiconductor industry for its high dielectric constant. However, for utilization on Si substrate, $TiO_2$ film meets with a difficulty due to the large leakage currents caused by its small conduction band energy offset from Si substrate. In this study, we propose an in-situ plasma oxidation process in plasma-enhanced atomic layer deposition (PE-ALD) system to form an oxide barrier layer which can reduce the leakage currents from Si substrate to $TiO_2$ film. $TiO_2$ film depositions were followed by the plasma oxidation process using tetrakis(dimethylamino)titanium (TDMAT) as a Ti precursor. In our result, $SiO_2$ layer was successfully introduced by the plasma oxidation process and was used as a barrier layer between the Si substrate and $TiO_2$ film. Metal-oxide-semiconductor ($TiN/TiO_2/P-type$ Si substrate) capacitor with plasma oxidation barrier layer showed improved C-V and I-V characteristics compared to that without the plasma oxidation barrier layer.

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim;Junghee Choi;Jin-Hyeok Choi;Ji-Youn Seo;Gumjae Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.162-173
    • /
    • 2023
  • Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.