• Title/Summary/Keyword: layer 2

Search Result 19,001, Processing Time 0.05 seconds

The Fabrication of MOS Capacitor composed of $HfO_2$/Hf Gate Dielectric prepared by Atomic Layer Deposition (ALD 방법으로 증착된 $HfO_2$/Hf 박막을 게이트 절연막으로 사용한 MOS 커패시터 제조)

  • Lee, Dae-Gab;Do, Seung-Woo;Lee, Jae-Sung;Lee, Yong-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.5
    • /
    • pp.8-14
    • /
    • 2007
  • In this paper, $HfO_2$/Hf stacked film has been applied as the gate dielectric in MOS devices. The $HfO_2$ thin film was deposited on p-type (100) silicon wafers by atomic layer deposition (ALD) using TEMAHf and $O_3$ as precursors. Prior to the deposition of the $HfO_2$ film, a thin Hf metal layer was deposited as an intermediate layer. Round-type MOS capacitors have been fabricated on Si substrates with 2000${\AA}$-thick Al or Pt top electrode. The prepared film showed the stoichiometric components. At the $HfO_2$/Si interface, both Hf-Si and Hf-Si-O bonds were observed, instead of Si-O bond. The sandwiched Hf metal layer suppressed the growing of $SiO_x$ layer so that $HfSi_xO_y$ layer was achieved. It seems that the intermediate Hf metal layer has a benefit for the enhancement of electric characteristics of gate dielectric in $HfO_2$/Si structure.

Al2O3/SiO2/Si(100) interface properties using wet chemical oxidation for solar cell applications

  • Min, Kwan Hong;Shin, Kyoung Cheol;Kang, Min Gu;Lee, Jeong In;Kim, Donghwan;Song, Hee-eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.418.2-418.2
    • /
    • 2016
  • $Al_2O_3$ passivation layer has excellent passivation properties at p-type Si surface. This $Al_2O_3$ layer forms thin $SiO_2$ layer at the interface. There were some studies about inserting thermal oxidation process to replace naturally grown oxide during $Al_2O_3$ deposition. They showed improving passivation properties. However, thermal oxidation process has disadvantage of expensive equipment and difficult control of thin layer formation. Wet chemical oxidation has advantages of low cost and easy thin oxide formation. In this study, $Al_2O_3$/$SiO_2/Si(100)$ interface was formed by wet chemical oxidation and PA-ALD process. $SiO_2$ layer at Si wafer was formed by $HCl/H_2O_2$, $H_2SO_4/H_2O_2$ and $HNO_3$, respectively. 20nm $Al_2O_3$ layer on $SiO_2/Si$ was deposited by PA-ALD. This $Al_2O_3/SiO_2/Si(100)$ interface were characterized by capacitance-voltage characteristics and quasi-steady-state photoconductance decay method.

  • PDF

Fabrication and Fracture Properties of Nb/MoSi2Laminate Composites (Nb/MoSi2적층복합재료의 제조 및 파괴특성)

  • Lee, Sang-Pill;Yoon, Han-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1047-1052
    • /
    • 2002
  • The impact value, the interfacial shear strength, the tensile strength and the fracture strain of Nb/MoSi$_2$laminate composites, which were associated with the interfacial reaction layer, have been investigated. Three types of Nb/MoSi$_2$ laminate composites alternating sintered MoSi$_2$ layers and Nb foils were fabricated as the parameter of hot press temperature. The thickness of interfacial reaction layer of Nb/MoSi$_2$ laminate composites increased with increasing the fabrication temperature. The growth of interfacial reaction layer increased the interfacial shear strength and led to the decrease of impact value in Nb/MoSi$_2$ laminate composites. It was also found that in order to maximize the fracture energy of Nb/MoSi$_2$ laminate composites, interfacial shear strength and the thickness of interfacial reaction layer must be secured appropriately.

Microstructures and Mechanical Properties of $ZrO_2-8%Y_2O_3$ Coating Layer by Plasma/Laser Complex Spraying (플라즈마/레이저 복합용사에 의한 $ZrO_2-8%Y_2O_3$ 코팅층의 미세구조 및 기계적 특성)

  • Kim, Y.S.;Oh, M.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.48-53
    • /
    • 2000
  • This study was aimed at observing the influence of laser irradiation on a $ZrO_2-8%Y_2O_3$ ceramic coating layer fabricated by plasma spraying. The $ZrO_2-8%Y_2O_3$ ceramic powder was plasma sprayed onto SS400 carbon steel substrate and laser irradiated on the coating layer under various conditions of laser power and beam diameters. As to the as-sprayed specimen and laser-treated specimen, a hardness test and a microstructure analysis were performed. Hardness was measured by a microhardness tester; microstructure was observed by an optical microscope and a scanning electron microscope. The result was that the microstructure of the laser-irradiated coating layer was dense; porosities almost disappeared and hardness increased. It was also observed that microcracks occured in the laser-irradiated coating layer.

  • PDF

Effect of SiO2 Antireflection Coating on the Si Solar Cell (Si 태양전지에서 SiO2 광반사 방지막의 처리 효과)

  • Chang Gee-Keun;Lim Yong-Keu;Hwang Yong-Woon;Cho Jae-Uk
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.152-156
    • /
    • 2004
  • We have studied the effective optical absorption power of Si solar cell with $SiO_2$-antireflection layer based on a mathematical modelling of AM(air mass)1 spectrum and Si refractive index in the wavelength range(0.4 $\mu\textrm{m}\leq$λ$\leq$$0.97\mu\textrm{m}$). The effective optical absorption power obtained from the theoretical calculation was 450 and 520 W/$\m^2$ for the Si solar cells with $SiO_2$-antireflection layer of 500$\AA$ and 1000$\AA$, respectively. The optimum thickness of $SiO_2$-antireflection layer showing the minimum reflection loss was about 1000$\AA$ in the computer simulation. Two kinds of Si solar cells named EBS(500$\AA$) and EBS(l000$\AA$) were fabricated to evaluate the effect of $SiO_2$-antireflection layer thickness on the optical absorption. The epitaxial base Si cell with $SiO_2$-antireflection layer of 1000$\AA$ [EBS(l000$\AA$)] showed the output power improvement of about 15% upon the EBS(500$\AA$) cell due to larger absorption of effective optical power under illumination of AM1, 1 sun.

The Microstructures and Properties of Surface Layer on the Tool Steel Formed by Ion Nitriding -Effects of Process Parameter- (마이크로 펄스 플라즈마 질화에 의해 생성된 금형 공구강의 표면층에 관한 연구 -공정 변수의 영향-)

  • Lee, J.S.;Kim, H.G.;You, Y.Z.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.1
    • /
    • pp.8-16
    • /
    • 2001
  • The effects of gas composition, pressure, temperature and time on the case thickness, hardness and nitride formation in the surface of tool steels(STD11 and STD61) have been studied by micro-pulse plasma nitriding. External compound layer and internal diffusion layer and the diffusion layer were observed in the nitrided case of tool steels. The relative amounts and kind of phases formed in the nitrided case changed with the change of nitriding conditions. Generally, only nitride phases such as ${\gamma}(Fe_4N)$, ${\varepsilon}(Fe_{2-3}N)$, or $Cr_{1.75}V_{0.25}N_2$ phases were detected in the compound layer, while nitride and carbide phases such as ${\varepsilon}-nitride(Fe_{2-3}N)$, $(Cr,Fe)_{\gamma}C_3$ or $Fe_3C$ were detected in the diffusion layer by XRD analysis. The thickness of compound layer increased with the increase of nitrogen content in the gas composition. Maximum case depth was obtained at gas pressure of 200Pa.

  • PDF

Effect of Adhesion Layer on Gate Insulator (게이트 절연막에 사용된 점착층에 대한 영향)

  • Lee, Dong-Hyun;Hyung, Gun-Woo;Pyo, Sang-Woo;Kim, Young-Kwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.357-361
    • /
    • 2006
  • The electrical performances of organic thin-film transistors (OTFTs) have been improved for the last decade. In this paper, it was demonstrated that the electrical characteristics of the organic thin film transistors (OTFTs) were improved by using polymeric material as adhesion layer on gate insulator. We have investigated OTFTs with polyimide adhesion layer which was fabricated by vapor deposition polymerization (VDP) processing and formed by co-deposition of 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride and 4,4'-oxydianiline. It was found that the OTFTs with adhesion layer showed better electrical characteristics than with bare layer because of good matching between semiconductor and gate insulator. Our devices of performance are field effect mobility of $0.4cm^2/Vs$, threshold voltage of -0.8 V and on-off current ratio of $10^6$. In addition, to improve the electrical characteristics of OTFT, we have reduced the thickness of adhesion layer up to a few nanometrs.

Comparison of Yittria Stabilized Zirconia Electrolytes(YSZ) for Thin Film Solid Oxide Fuel Cell by Atomic Layer Deposition and Sputtering (원자층 증착법과 스퍼터링을 이용한 고체산화물 연료전지용 YSZ 전해질에 관한 연구)

  • Tanveer, Waqas Hassan;Ha, Seung Bum;Ji, Sanghoon;Cha, Suk Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.84.2-84.2
    • /
    • 2011
  • In this research, two thin film deposition techniques, Atomic Layer Deposition and Sputtering are carried out for the fabrication of Yittria Stabilized Zirconia electrolyte for thin film Solid Oxide Fuel Cell. Zirconium to Yittrium ratio for both cases is about 1/8. Scanning Electron Microscope(SEM) image shows that the growth rate per hour for Atomic Layer Deposition is faster than for sputtering. X-ray Photo-electron Spectroscopy(XPS) shows that the peaks of both Zirconia and Yittria shift towards higher bending energy for the case of Atomic Layer deposition and thus are more strongly attached to the substrate. Later, Nyquist plot was used to compare the conductivity of Yittria Stabilized Electrolyte for both cases. The conductivity at $300^{\circ}C$ for Atomic Layer Deposited Yittria Stabilized Zirconia is found to be $5{\times}10^{-4}S/cm$ while that for sputtered Yittria Stabilized Zirconia is $2{\times}10^{-5}S/cm$ at the same temperature. The reason for better performance for Atomic Layered YSZ is believed to be the Nano-structured layer fabrication that aids in along the plane conduction as compared to the columnarly structured Sputtered YSZ.

  • PDF

Duplex Surface Treatments of Plasma Nitrocarburizing and Plasma Oxidation of SKD 11 Steel

  • Lee, In-Sup;Jeong, Kwang-Ho;Cho, Young-Rae
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.6
    • /
    • pp.250-253
    • /
    • 2007
  • Plasma nitrocarburizing and plasma oxidizing treatments were performed to improve the wear and corrosion resistance of SKD 11 steel. Plasma nitrocarburizing was conducted for 12 h at $520^{\circ}C$ in the nitrogen, hydrogen and methane atmosphere to produce the $\varepsilon-Fe_{2-3}(N,C)$ phase. It was found that the compound layer produced by plasma nitrocarburising was predominantly composed of $\varepsilon-phase$, with a small proportion of $\gamma'-Fe_4(N,C)$ phase. The thickness of the compound layer was about $5{\mu}m$ and the diffusion layer was about $150{\mu}m$ in thickness, respectively. Plasma post oxidation was performed on the nitrocarburized samples with various oxygen/hydrogen ratio at constant temperature of $500^{\circ}C$ for 1 hour. The very thin magnetite($Fe_3O_4$) layer $1-2{\mu}m$ in thickness on top of the compound layer was obtained by plasma post oxidation. It was confirmed that the corrosion characteristics of the nitrocarburized compound layer could be further improved by the application of the superficial magnetite layer.

Simulation Study on the Breakdown Enhancement for InAlAs/InGaAs/GaAs MHEMTs with an InP-Etchstop Layer (InP 식각정지층을 갖는 InAlAs/InGaAs/GaAs MHEMT 소자의 항복 전압 개선에 관한 연구)

  • Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.23-27
    • /
    • 2013
  • This paper is for enhancing the breakdown voltage of MHEMTs with an InP-etchstop layer. Gate-recess structures has been simulated and analyzed for the breakdown of the devices with the InP-etchstop layer. The fully removed recess structure in the drain side of MHEMT shows that the breakdown voltage enhances from 2V to almost 4V and that the saturation current at gate voltage of 0V is reduced from 90mA to 60mA at drain voltage of 2V. This is because the electron-captured negatively fixed charges at the drain-side interface between the InAlAs barrier layer and the $Si_3N_4$ passivation layer deplete the InGaAs channel layer more and thus decreases the electron current passing the channel layer. In the paper, the fully-recessed asymmetric gate-recess structure at the drain side shows the on-breakdown voltage enhancement from 2V to 4V in the MHEMTs.