• Title/Summary/Keyword: launching stability

Search Result 25, Processing Time 0.022 seconds

The Effect on Launching Stability Due to the Initial Missile Detent Force (유도탄의 초기 구속력이 발사안정에 미치는 영향)

  • 심우전;임범수;이우진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.4
    • /
    • pp.22-29
    • /
    • 1997
  • This paper presents results on dynamic analysis of the missile initial motion arising from the missile detent force. Using ADAMS (Automatic Dynamic Analysis of Mechanical Syatem) software, a non- linear46-DOF (Degree of Freedom) model is developed for the launcher system including missile and lunch tube contact problem. From the dynamic analysis, it is found that initial angular velocity of the missile incre- ases when the missile detent force increases and also when rocket exhaust plume is taken into account. To achieve the missile launching stability, it needs to reduce the missile initial detent force and exhaust plume area of the lancher. Results of the dynamic analysis on the system natural frequency agree well with those obtained from experimental modal tests. The overall results suggest that the proposed method is a useful tool for prediction of initial missile stability as well as design of the missile launcher system.

  • PDF

The Effect on the Launching Stability due to the Initial Missile Detent Force (발사시 초기 구속력이 유도탄 발사안정에 미치는 영향)

  • 심우전;임범수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.1017-1022
    • /
    • 1996
  • This paper presents results of dynamic analysis of the missile initial motion arising from the missile detent force. Using ADAMS (Automatic Dynamic Analysis of Mechanical System) software, a non-linear 46-DOF (Degree of Freedom) model is developed for the launcher system including missile and launch tube contact problem. From the dynamic analysis, it is found that initial angular velocity of the missile increases when the missile detent force increases (more than 18 g) and also rocket exhaust plume is taken into account. To achieve the missile launching s ability, it needs to reduce the missile initial detent force and exhaust plume area of the launcher. Results of the dynamic analysis on the system natural frequency agree well with those obtained from experimental modal tests. The overall results suggest that the proposed method is a useful tool for prediction of initial missile stability as well as d :sign of the missile launcher system.

  • PDF

Analysis of Two-Span Structures Constructed by Incremental Launching Method (ILM 공법에 의해 시공된 2경간 구조물의 해석)

  • Kim, Sung Hoon;Kim, Bu Kyu;Choi, Jun Hyeok
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.35-42
    • /
    • 2016
  • This paper presents the structural analysis of two-span structures constructed by incremental launching method to traverse the existing facilities. The structure with a relatively short launching span can not be secure the structural stability caused by excessive deflection and overturning prior to reaching the maximum strength, because the length of the other span is different or the rear structure is not continuous. In order to estimate the stability of the construction stages of deflection and the overturning, the structural analysis was carried out. The parameters of the analysis is launching span ratio of the launching nose and the upper structure, weight ratio and so on. From the analysis result, the effects of parameters were investigated and a deflection formula of the launching nose and the condition of the overturning of structure were proposed.

Stability Evaluation of Floating Dock during Construction and Launching of Caisson for Breakwater (방파제용 대형 케이슨 제작/진수에 따른 부양식 독의 안정성 해석)

  • Seok, Jun;Park, Jong-Chun;Jeong, Se-Min;Kim, Sung-Yong;Kang, Heon-Yong;Kim, Moo-Hyun;Kang, Yoon-Koo
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • In general, huge caissons for breakwaters have been constructed on land or a floating dock. In the case of the construction on a floating dock, a 4 step installation procedure is involved: i) construction on a floating dock, ii) transportation by the floating dock to an area near the target sea, iii) launching from the floating dock, and iv) transference by tug-boats to the installation site. It is especially important to pay attention to the dynamic stability of the floating dock against the conditions in the sea during steps i) and iii). In this paper, the static and dynamic stabilities of a caisson on a floating dock are evaluated based on IMO rules during the construction and launching of the caisson on a floating dock by using independent commercial S/Ws such as NAPA, WAMIT, and CHARM3D.

A Development of Numerical Analysis Software on Dynamic Analysis for Lunching System (발사 시스템의 동역학 해석을 위한 수치해석 프로그램 개발)

  • Chae, Ae-Kyung;Bae, Dae-Sung;Jeon, Hyuck-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.12
    • /
    • pp.1146-1152
    • /
    • 2008
  • In the initial stage of guided missile launching, the dynamic stability of a missile is highly influenced by disturbances from the outside and interferences among the launching system parts. This research develops a program for guided missile launching system analysis. Random variables are used to analyze quantitatively the missile characteristic response. An example of results with the program applied into a specific System is presented to demonstrate the effectiveness of the propose method.

An Upending Stability for Offshore Jacket (대형 해양 자켓의 직립 안정성 고찰)

  • Jo, C.H.;Kim, B.H.;Jeong, H.
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.203-207
    • /
    • 2003
  • As the upending is one of the critical steps in the installation of offshore structure, datail procedure of upending operation is studied in the paper. For larger offshore structure installation, launching method is often applied. However after launching, the upending process is to be followed. To ensure successful upending operation, datail process is analysed considering various factors affecting on the operation including reserved buoyancy, free flotation position, seabed clearance, ballast and hook load. To investigate the influence of each factor on the procedure, twelve numerical jacket models with various dimensions are simulated and studied. From the study, it is revealed that the increase of buoyance and decrease of self weight generate a large seabed clearance. The law seabed clearance during flooding creates higher hook load and height. The paper also introduces a guideline for the related structure design and construction with the effects of contribution factors in the upending operation.

  • PDF

Aerodynamic Problems of Launch Vehicles

  • Chou, Kyong-Chol
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.5-21
    • /
    • 1984
  • The airflow along the surface of a launch vehicle together with base flow of clustered nozzles cause problems which may affect the stability or efficiency of the entire vehicle. The problem may occur when the vehicle is on the launching pad or even during flight. As for such problems, local steady-state loads, overall steady-state loads, buffet, ground wind loads, base heating and rocket-nozzle hinge moments are examined here specifically.

  • PDF

Heat Transfer on a Jet Vane Surface Installed in a Rocket Nozzle (로켓노즐에 장착된 제트베인 표면의 열전달 특성)

  • Yu Man Sun;Cho Hyung Hee;Hwang Ki Young;Bae Ju Chan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.1
    • /
    • pp.9-16
    • /
    • 2005
  • Jet vane is an useful component which is installed at the end of a nozzle for the purpose of the posture control and the secure controlling stability during the initial launching of a rocket. During several seconds from its initial launching moment, the JV driving part is heated due to the direct contact of the vane with the combusted gas and the vane is ablated mechanically or chemically. In this study, as the fundamental study for the thermal analysis of jet vane, the heat transfer into a jet vane which is located in the uniform supersonic flow field is calculated. For this, boundary layer integral method and finite difference method are used simultaneously. Based on the thermal boundary conditions derived from the analysis, the transient heat conduction in the vane is also calculated.

Factors of Successful Policy Implementation in National Projects for Technology Innovation (과학기술혁신을 위한 National Project의 성공적 정책집행의 요인)

  • Cho, Gug-Hyeon
    • Journal of Technology Innovation
    • /
    • v.12 no.3
    • /
    • pp.73-96
    • /
    • 2004
  • This research began by recognizing the development of telecommunication skill in a short period of time as one achievement of launching the national research and development (R&D) project for the diversification of telephone service and for the solution of telephone holdup rate. Under this concern, this research is focusing on searching the influential elements on successful outcome by analyzing the case of Time Division Exchange R&D Project carried out by Korea. Those variables for analyzing the case is limited to 7 definite variables, which are "willingness of policy making organization", "participation of manufacturers and buyers", "support from research and development group", "economy of operating methods and selection of machinery", "rate of technology transfer", "support from Fixer", and "quality management". Summarizing the result of analysis, in order to bring about technological innovation, knowledge creation activity leading to upward efficiency through competition and cooperation making a harmony should be done in one mechanism. I.e., launching an innovative policy should be done in an arena of competition and cooperation, where stability of implementing system is achieved, the entity of "Fixer" is an adequate operator, and competition and cooperation is efficiently managed, among where agreement on purpose and professional opinions are reflected.

  • PDF

A Study about the Pitch Stability of Exploratory Underwater Vehicles (해저탐사잠수정의 연직평면에서의 방향안정성에 관한 연구)

  • 윤점동
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.1
    • /
    • pp.93-106
    • /
    • 1987
  • Nowadays natural resources on shore have been almost exhausted all over the world and mankind is beginning searching for unexploited resources on the bed of deep-sea floor. In exploring mineral resources and etc. in the ground of sea-bed, a sumbersible craft is one of the most important tools. These days, the stage of the technique of building and operating an exploring submersible craft is almost alike that of building and operating an airplane in the first years of the nineteen-twenties. At the present time, the problems arising in building and operating a submersible craft can be divided into four parts as follows; 1. How to build a hull that can bear high pressure under deep sea level. 2. How to decide the necessary facilities to be put on it. 3. How to decide the scope of stabilities and maneuvering characteristics of it. 4. On what sea conditions, the devices of launching and recovering it should be designed on the mother-ship. In this paper treating one of the third problems the author made a mathematic formula that can be useful in deciding the scope of dynamic course stability on the vertical plane and actually calculated the onset speed of pitch instability of an exploring craft. With the above mentioned calculations the author demonstrated that the value of $Z_g$ and the speed of a submerged craft are the most important factors in decideing the scope of dynamic stability on the vertical plane.

  • PDF