• Title/Summary/Keyword: launch vehicle design

Search Result 287, Processing Time 0.024 seconds

The Operation Concept and Procedure of Mechanical Ground Support Equipment for KSLV-II Launch Complex (한국형발사체 발사대시스템 지상기계설비 운용개념 및 절차)

  • Lim, Chankyoung;Kim, Daerae;Yang, Seongpil;Lee, Yeongho;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.125-132
    • /
    • 2018
  • The mechanical ground support equipment of a Korea Space Launch Vehicle-II launch complex is a collection of systems used for transporting, erecting and lowering the launch vehicle. It also provides an interface for supplying propellants. In this paper, compositions, functions and design results of mechanical ground support equipment are introduced. Additionally, the operational concept of each piece of equipment is presented with operation procedure.

Technology Trend of Propellant Tank Vent Relief Valve for Launch Vehicle (발사체용 추진제 탱크 벤트릴리프 밸브 기술 동향)

  • Koh, Hyeon-Seok
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.130-138
    • /
    • 2011
  • A vent relief valve performs as a safety valve, which ensures ventilation of propellant tank during filling and protection from tank overpressure after filling. Because of the reliability and cost saving, the virtually same vent relief valve has been used on all US cryogenic liquid fueled launch vehicles. Some modification to the valve has been applied to satisfy the various mission requirements of launch vehicles. This paper reviews the main technology trends of the vent relief valve applied to the propellant feed system for launch vehicle with respect to design and manufacture. This paper also introduces the operating technology of vent relief valve applied for launch vehicles of advanced countries in space development.

  • PDF

Critical Design Result of Liquid Oxygen Filling System for Korea Space Launch Vehicle-II Launch Complex (한국형발사체 발사대시스템 산화제공급설비 상세설계)

  • Seo, Mansu;Ko, Min-Ho;Sun, Jeong-Woon;Suh, Hyun-Min;Lee, Jae Jun;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.102-110
    • /
    • 2017
  • In this paper, the liquid oxygen filling system (LOXFS) of the launch complex system of Korea Space Launch Vehicle-II (KSLV-II) is introduced based on critical design result by KARI in 2015 to 2016. The function and specification of the main systems of the liquid oxygen filling system, such as the storage tank, the drainage tank, the supply pumping system, the curved heat exchanger with liquid nitrogen, end valve block system, and umbilical connection, are presented.

Basic Design of Propellant Ground Support Equipment and Flame Deflector for KSLV-II Launch Complex (한국형발사체 발사대시스템 추진제공급설비 및 화염유도로 설계)

  • Kang, Sunil;Oh, Hwayoung;Kim, Daerae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.76-86
    • /
    • 2015
  • KSLV-II, a new launch vehicle of Korea, requires a new launch complex(LC) for its own and proper launch operations. The new launch complex will be constructed in NARO Space Center neighboring KSLV-I launch complex for maximizing operation efficiency and economic matters. The launch complex consists of three ground support equipments, i.e., mechanical, electrical, and fuel in general. The fuel ground support equipment could be defined as a combination of systems for storage and supply of propellants and gases which are required by a launch vehicle. The compositions, functions and capabilities of fuel ground support equipment are introduced in this paper. In addition, basic design results of flame deflector configurations are included.

Development of Configuration Management Methodology for Rocket Development Test Facilities (발사체 개발 시험시설의 형상관리 방법론 개발)

  • Jeon, Chanmin;Choi, Minchan;Park, Taekeun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.3
    • /
    • pp.31-41
    • /
    • 2023
  • This study is a study to develop a configuration management methodology for efficient and systematic management in the event of configuration changes such as deformation, explosion, and remodeling of launch vehicle development test facilities, which are emerging as important national facilities in the era of full-scale space competition. Through the analysis of international standards for configuration management, a configuration management process framework to be applied to launch vehicle development test facilities is extracted, a survey was conducted on experts who performed life cycle engineering of launch vehicle development test facilities, and a configuration management methodology optimized for operation/management of domestic launch vehicle development test facilities was proposed. Identify the configuration for launch vehicle development test facilities, the configuration management manager, configuration management organization, and configuration management board approve/process the configuration changes, and after construction is completed according to design requirements, launch vehicle development test facilities try to manage the configuration in a controlled state.

Trajectory Optimization and Optimal Explicit Guidance Algorithm Design for a Satellite Launch Vehicle (위성발사체의 궤적최적화와 최적 유도 알고리듬 설계)

  • Roh, Woong-Rae;Kim, Yodan;Song, Taek-Lyul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.173-182
    • /
    • 2001
  • Ascent trajectory optimization and optimal explicit guidance problems for a satellite launch vehicle in a 2-dimensional pitch plane are studied. The trajectory optimization problem with boundary conditions is formulated as a nonlinear programming problem by parameterizing the pitch attitude control variable, and is solved by using the SQP algorithm. The flight constraints such as gravity-turn are imposed. An optimal explicit guidance algorithm in the exoatmospheric phase is also presented, the guidance algorithm provides steering command and time-to-go value directly using the current states of the vehicle and the desired orbit insertion conditions. To verify the optimality and accuracy of the algorithm simulations are performed.

  • PDF

KOMPSAT SATELLITE LAUNCH AND DEPLOYMENT OPERATIONS

  • Baek, Myung-Jin;Chang, Young-Keun;Lee, Jin-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.199-208
    • /
    • 1999
  • In this paper, KOMPSAT satellite launch and deployment operations are discussed. The U.S. Taurus launch vehicle delivers KOMPSAT satellite into the mission orbit directly. Launch and deployment operations is monitored and controlled by several international ground stations including Korean Ground Station (KGS). After separation from launch vehicle, KOMPSAT spacecraft deploys solar array by on-board autonomous stored commands without ground inter-vention and stabilizes the satellite such that solar arrays point to the sun. Autonomous ground communication is designed for KOMPSAT for the early orbit ground contact. KOMPSAT space-craft has capability of handing contingency situation by on-board fault management design to retry deployment sequence.

  • PDF

The operation concept and procedure of mechanical ground support equipment for KSLV-II launch complex (한국형발사체 발사대시스템 지상기계설비 운용개념 및 절차)

  • Lim, Chankyoung;Kim, Daerae;Yang, Seongpil;Lee, Yeongho;Kang, Sunil
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.30-35
    • /
    • 2017
  • The mechanical ground support equipment of KSLV-II launch complex is a collection of systems for transporting, erecting, lowering the launch vehicle and for providing an interface to supply propellants to the launch vehicle. In this paper, compositions, functions and design results of mechanical ground support equipment are introduced. In addition, the operation concept of each equipment along with operation procedure is presented.

  • PDF

Calculation and Comparison of Liquid Oxygen Filling System between the KSLV-I Flight Test Data and the Modeling of the KSLV-II Launch Complex (한국형발사체 발사대시스템 산화제공급계 충전 운용 설계의 검증을 위한 나로호 비행시험 실증 자료 분석)

  • Seo, Mansu;Lee, Jae Jun;Hong, Ilgu;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.107-114
    • /
    • 2018
  • Korea Space Launch Vehicle (KSLV)-I flight test data and the modified 1-dimensional steady state modeling data from the critical design results of the KSLV-II liquid oxygen filling system operation are compared to validate the reliability of critical design modeling. A comparison of major flow rates and pressure values between test data and calculation results are conducted. The relative errors relative to maximum total flow rate for each cooling, filling, and replenishment mode are determined within 6.7%. Calculated pressure values at the outlet of the pump and the inlet of flow control valves are within 5.1%. The pressure at the inlet of the launch vehicle for each operation mode are within the measured pressure range.

Analytic Considerations of Liquid Rocket Engine Thrust Chamber Design for the KSLV-II (한국형발사체 액체로켓엔진 연소기 설계의 해석적 고찰)

  • Choi, Hwan-Seok;Han, Yeoung-Min;Ryu, Chul-Sung;Kim, Seong-Ku
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.4
    • /
    • pp.71-80
    • /
    • 2010
  • The KSLV-II(Korea Space Launch Vehicle-II) which being a successor of the KSLV-I is a space launch vehicle capable of delivering 1.5 ton-class satellite into a low earth orbit. The development of a 75 tonf-class liquid rocket engine(LRE) is planned on the basis of the technologies mastered through the preceded research of a 30 tonf-class LRE. The thrust chamber of the LRE is required to have higher combustion stability, structural integrity and thermal durability. This paper deals with the design requirements of the 75-tonf thrust chamber and a variety of technical considerations which have been conducted analytically in the course of the design for the realization of the requirements.