• Title/Summary/Keyword: lattice sheet

Search Result 34, Processing Time 0.027 seconds

The development and the magnetic properties of sheet hexaferrite magnets (Hexaferrite 쉬트자석의 개발과 자기적 성질에 관한 연구)

  • 김철성;박승일;오영제
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.281-286
    • /
    • 1995
  • In order to study the effect of additives $SiO_{2}$ on the magnetic properties of hexaferrite sheet magnet, we used X-ray diffractometer, Mossbauer spectrometer, and VSM magnetometer. We have prepared $Ba_{0.25}Sr_{0.75}Fe_{12}O_{19}$ green sheets by the Dr. Blade method. Most of samples have a magnetoplurnbite crystal structure of typical M-type hexaferrite. The lattice parameters are found not to be affected by the addition of $SiO_{2}$. ${\alpha}-Fe_{2}O_{3}$ phase develops above $SiO_{2}$ 2.0 wt.%. Isomer shifts indicate that the valence of Fe ions is trivalent. Curie temperatures decrease slightly with increasing $SiO_{2}$ concentrations. It means that the $Si^{4+}$ subsitution for 12k-site $Fe^{3+}$ has an effect on the superexchange interactions Fe-O-Fe, which change the distance and the angle between cations and anions. It was suggested that ${\alpha}-Fe_{2}O_{3}$ phase results from the excessive Fe produced by subsituting $Si^{4+}$ for $Fe^{3+}$. Based upon the results of $Ba_{0.25}Sr_{0.75}Fe_{12}O_{19}$ added with $SiO_{2}$, we concluded that $H_{c}$, $M_{s}$ and $M_{r}$ depend more strongly on the microstructure chracteristics than on the cation substitution.

  • PDF

Effect of Cross Rolling on the Development of Textures in Tantalum (탄탈륨 집합조직 발달에 대한 교차압연의 영향)

  • Kang, Jun-Yun;Park, Seongwon;Park, Jun Young;Park, Seong-Jun;Song, Yi-Hwa;Park, Sung-Taek;Kim, Gwang-Lyeon;Oh, Kyeong-Won
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.275-282
    • /
    • 2018
  • Two different modes of rolling were applied to control the texture development in tantalum sheet. In the conventional uni-directional rolling, the typical rolling textures of a body-centered cubic metal which was primarily composed of <110>//(rolling direction) was developed. In a cross rolling where the specimen was rotated by $90^{\circ}$ between each pass, the rotated cube components, i.e. {100}<011> were greatly reinforced. The prediction of lattice rotation by the full-constraint Taylor model showed that the high stability and the symmetry of the rotated cube components caused their strengthening in cross-rolling. The two specimens were heated to $1,100^{\circ}C$ at $9^{\circ}C/min$and held for 1 hour for annealing, then cooled to room temperature in atmosphere. In spite of the significant difference in the deformation textures, the annealing textures were very similar. They developed strong <111>//(plane normal) components with negligible intensity at the rotated cube components, which was attributed to the negligible capability of the latter components to provide effective recrystallized grains.

Co-Deposition법을 이용한 Yb Silicide/Si Contact 및 특성 향상에 관한 연구

  • Gang, Jun-Gu;Na, Se-Gwon;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.438-439
    • /
    • 2013
  • Microelectronic devices의 접촉저항의 향상을 위해 Metal silicides의 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 지난 수십년에 걸쳐, Ti silicide, Co silicide, Ni silicide 등에 대한 개발이 이루어져 왔으나, 계속적인 저저항 접촉 소재에 대한 요구에 의해 최근에는 Rare earth silicide에 관한 연구가 시작되고 있다. Rare-earth silicide는 저온에서 silicides를 형성하고, n-type Si과 낮은 schottky barrier contact (~0.3 eV)를 이룬다. 또한, 비교적 낮은 resistivity와 hexagonal AlB2 crystal structure에 의해 Si과 좋은 lattice match를 가져 Si wafer에서 high quality silicide thin film을 성장시킬 수 있다. Rare earth silicides 중에서 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 낮은 schottky barrier 응용에서 쓰이고 있다. 이로 인해, n-channel schottky barrier MOSFETs의 source/drain으로써 주목받고 있다. 특히 ytterbium과 molybdenum co-deposition을 하여 증착할 경우 thin film 형성에 있어 안정적인 morphology를 나타낸다. 또한, ytterbium silicide와 마찬가지로 낮은 면저항과 electric work function을 갖는다. 그러나 ytterbium silicide에 molybdenum을 화합물로써 높은 농도로 포함할 경우 높은 schottky barrier를 형성하고 epitaxial growth를 방해하여 silicide film의 quality 저하를 야기할 수 있다. 본 연구에서는 ytterbium과 molybdenum의 co-deposition에 따른 silicide 형성과 전기적 특성 변화에 대한 자세한 분석을 TEM, 4-probe point 등의 다양한 분석 도구를 이용하여 진행하였다. Ytterbium과 molybdenum을 co-deposition하기 위하여 기판으로 $1{\sim}0{\Omega}{\cdot}cm$의 비저항을 갖는 low doped n-type Si (100) bulk wafer를 사용하였다. Native oxide layer를 제거하기 위해 1%의 hydrofluoric (HF) acid solution에 wafer를 세정하였다. 그리고 고진공에서 RF sputtering 법을 이용하여 Ytterbium과 molybdenum을 동시에 증착하였다. RE metal의 경우 oxygen과 높은 반응성을 가지므로 oxidation을 막기 위해 그 위에 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, 진공 분위기에서 rapid thermal anneal(RTA)을 이용하여 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium silicides를 형성하였다. 전기적 특성 평가를 위한 sheet resistance 측정은 4-point probe를 사용하였고, Mo doped ytterbium silicide와 Si interface의 atomic scale의 미세 구조를 통한 Mo doped ytterbium silicide의 형성 mechanism 분석을 위하여 trasmission electron microscopy (JEM-2100F)를 이용하였다.

  • PDF

Low-Temperature Performance of Solution-Based Transparent Conducting Oxides Depending on Nanorod Composite for Sn-Doped In2O3 Nanoinks (Sn-Doped In2O3 나노잉크를 위한 나노로드의 복합화에 따른 용액기반 투명 전도성 산화물의 저온성능)

  • Bae, Ju-Won;Koo, Bon-Ryul;Lee, Tae-Kun;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.3
    • /
    • pp.149-154
    • /
    • 2017
  • Transparent conducting oxides (TCOs) were fabricated using solution-based ITO (Sn-doped $In_2O_3$) nanoinks with nanorods at an annealing temperature of $200^{\circ}C$. In order to optimize their transparent conducting performance, ITO nanoinks were composed of ITO nanoparticles alone and the weight ratios of the nanorods to nanoparticles in the ITO nanoinks were adjusted to 0.1, 0.2, and 0.5. As a result, compared to the other TCOs, the ITO TCOs formed by the ITO nanoinks with weight ratio of 0.1 were found to exhibit outstanding transparent conducting performance in terms of sheet resistance (${\sim}102.3{\Omega}/square$) and optical transmittance (~80.2 %) at 550 nm; these excellent properties are due to the enhanced Hall mobility induced by the interconnection of the composite nanorods with the (440) planes of the short lattice distance in the TCOs, in which the presence of the nanorods can serve as a conducting pathway for electrons. Therefore, this resulting material can be proposed as a potential candidate for solution-based TCOs for use in optoelectronic devices requiring large-scale and low-cost processes.

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

Development of Water-lubricated Plastic Bearings (수-윤활용 플라스틱 베어링 개발에 관한 연구)

  • Hosung Kong;Hung-gu Han
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.235-243
    • /
    • 2023
  • This paper presents the fabrication process of water-lubricated plastic bearings. Plastic bearings require good mechanical properties and tribological properties as well as elasticity and shock resistance, especially when lubricated in dirty water conditions. In this study, sleeve-type plastic bearings are produced by winding a prepreg sheet, which primary contains nitrile rubber (NBR)-modified epoxy, self-lubricating fillers, and various types of lattice-structured reinforcing fibers such as carbon, Aramid, and polyethylene terephthalate. A thermosetting epoxy is chemically modified with NBR to impart elasticity and low-friction characteristics in water conditions. Experimental investigations are conducted to examine the mechanical and tribological characteristics of the developed bearing materials, and the results are compared with the characteristics of a commercial plastic bearing (Thordon SXL), well known as a water-lubricated bearing. A Thordon bearing (mainly composed of polyurethane) exhibits an extremely low load-bearing capacity and is thus only suitable for medium loading (1~10MPa). The tribological characteristics of the test materials are evaluated through Falex block-on-ring (LFW-1) friction and wear tests. The results indicate that friction exhibited by the carbon-fiber-reinforced NBR-10wt.%-modified epoxy composite material, incorporated with the addition of 20wt.% UHMWPE and 6wt.% paraffin wax, is lower than that of the Thorden bearings, whereas its wear resistance surpass that of Thorden ones. Because of these features, the load carrying capacity of the fabricated composite (>10MPa) is higher than that of the Thorden bearings. These results confirm the applicability of water-lubricated plastic bearing materials developed in this study.

A facile synthesis of transfer-free graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.129-129
    • /
    • 2016
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Synthesis of Hexagonal β-Ni(OH)2 Nanosheet as a Template for the Growth of ZnO Nanorod and Microstructural Analysis (ZnO 나노 막대 성장을 위한 기판층으로서 hexagonal β상 Ni(OH)2 나노 시트 합성 및 미세구조 분석)

  • Hwang, Sung-Hwan;Lee, Tae-Il;Choi, Ji-Hyuk;Myoung, Jae-Min
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.111-114
    • /
    • 2011
  • As a growth-template of ZnO nanorods (NR), a hexagonal $\beta-Ni(OH)_2$ nanosheet (NS) was synthesized with the low temperature hydrothermal process and its microstructure was investigated using a high resolution scanning electron microscope and transmission electron microscope. Zinc nitrate hexahydrate was hydrolyzed by hexamethylenetetramine with the same mole ratio and various temperatures, growth times and total concentrations. The optimum hydrothermal processing condition for the best crystallinity of hexagonal $\beta-Ni(OH)_2$ NS was determined to be with 3.5 mM at $95^{\circ}C$ for 2 h. The prepared $Ni(OH)_2$ NSs were two dimensionally arrayed on a substrate using an air-water interface tapping method, and the quality of the array was evaluated using an X-ray diffractometer. Because of the similarity of the lattice parameter of the (0001) plane between ZnO (wurzite a = 0.325 nm, c = 0.521 nm) and hexagonal $\beta-Ni(OH)_2$ (brucite a = 0.313 nm, c = 0.461 nm) on the synthesized hexagonal $\beta-Ni(OH)_2$ NS, ZnO NRs were successfully grown without seeds. At 35 mM of divalent Zn ion, the entire hexagonal $\beta-Ni(OH)_2$ NSs were covered with ZnO NRs, and this result implies the possibility that ZnO NR can be grown epitaxially on hexagonal $\beta-Ni(OH)_2$ NS by a soluble process. After the thermal annealing process, $\beta-Ni(OH)_2$ changed into NiO, which has the property of a p-type semiconductor, and then ZnO and NiO formed a p-n junction for a large area light emitting diode.

Raman Spectroscopy Analysis of Graphene Films Grown on Ni (111) and (100) Surface (니켈 (111)과 (100) 결정면에서 성장한 그래핀에 대한 라만 스펙트럼 분석)

  • Jung, Daesung;Jeon, Cheolho;Song, Wooseok;An, Ki-Seok;Park, Chong-Yun
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.194-202
    • /
    • 2016
  • A graphene film, two-dimensional carbon sheet, is a promising material for future electronic devices and so on. In graphene applications, the effect of substrate on the atomic/electronic structures of graphene is significant, so we studied an interaction between graphene film and substrate. To study the effect, we investigated the graphene films grown on Ni substrate with two crystal face of (111) and (100) by Raman spectroscopy, comparing with graphene films transferred on $SiO_2/Si$ substrate. In our study, the doping effect caused by charge transfer from Ni or $SiO_2/Si$ substrate to graphene was not observed. The bonding force between graphene and Ni substrate is stronger than that between graphene and $SiO_2/Si$. The graphene films grown on Ni substrate showed compressive strain and the growth of graphene films is incommensurate with Ni (100) lattice. The position of 2D band of graphene synthesized on Ni (111) and (100) substrate was different, and this result will be studied in the near future.

High Pressure Behavior Study of the Apophyllite (KF) (고압 하에서 어안석(KF)의 거동 연구)

  • Kim, Young-Ho;Choi, Jinwon;Heo, Sohee;Jeong, Nangyeong;Hwang, Gil Chan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.325-332
    • /
    • 2015
  • Apophyllite (KF)($K_{0.84}Ca_{3.99}Si_{7.70}O_{20}F_{0.72}{\cdot}8H_2O$), one of the sheet silicates, was compressed up to 7.7 GPa at ambient temperature and 15 high pressure data were obtained. Lattice parameters of the starting specimen were as follows: $a_0=8.954(2)\;{\AA}$, $c_0=15.795(2)\;{\AA}$, $V_0=1266.4(4)\;{\AA}^3$. Symmetrical diamond anvil cell was employed with synchrotron radiation in the mode of angular dispersive X-ray diffraction. Bulk modulus was determined to be 59(4) GPa when ${K_0}^{\prime}$ is 4. No clear first order phase transition symptom was observed in the series of XRD pattern. However, second-order phase transition cannot be ruled out from the correlation between normalized pressure and strain.