• Title/Summary/Keyword: lattice misfit

Search Result 33, Processing Time 0.025 seconds

Phase Diagrams and Stable Structures of Stranski-Krastanov Structure Mode for III-V Ternary Quantum Dots

  • Nakaima, Kazuno;Ujihara, Toru;Miyashita, Satoru;Sazaki, Gen
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.81-114
    • /
    • 1999
  • The strain, surface and inerfacial energies of III-V ternary systems were calculated for three kinds of structure modes: the Frank-van der Merwe (FM) mode, the Stranski-Krastanov (SK) mode an the Volmer-Wever (VW) mode. The free energy for each mode was estimated as functions of the thickness and composition or lattice misfit. Through comparison of the free energy of each mode, it was found that the thickness-composition phase diagrams of III-V ternary systems can be determined only by considering the balance of the free energy and three kinds of structure modes appear in the phase diagrams. The SK mode appears only when the lattice misfit is large and/or the lattice layer is thick. The most stable structure of the SK mode is a cluster with four lattice layers or minimum thickness on a wetting layer of increasing lattice layers. The VW mode appears when the lattice misfit is large and the lattice layer is thin and only in the InPSb/InP and GaPSb/GaP systems which have the largest lattice misfit of III-V ternary systems. The stable region of the SK mode in the GaPSb/GaP and InPSb/InP phase diagrams is largest of all because the composition dependence of the strain energy of these systems is stronger than that of the other systems. The critical number of lattice layers below which tow-dimensional (2D) layers precede the three-dimensional (3D) nucleation in the SK mode at x=1.0 depnds on the lattice misfit.

  • PDF

Phase diagrams adn stable structures of stranski-krastanov structure mode for III-V ternary quantum dots

  • Nakajima, Kazuo;Ujihara, Toru;Miyashita, Satoru;Sazaki, Gen
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.4
    • /
    • pp.387-395
    • /
    • 1999
  • The strain, surface and interfacial energies of III-V ternary systems were calculated for three kinds of structure modes: the Frank-van der Merwe(FM) mode, the Stanski-Krastanov(SK) mode and the Volmer-Weber(VW) mode. The free energy for each mode was estimated as functions of thickness and composition or lattice misfit. Through comparison of the free energy of each mode, it was found that the thickness-composition phase diagrams of III-V ternary systems can be determined only by considering the balance of the free energy and three kinds of structure modes appear in the phase diagrams. The SK mode appears only when the lattice misfit is large and/or the lattice layer is thick. The most stable structure of the SK mode is a cluster with four lattice layers or minimum thickness on a wetting layer of increasing lattice layers. The VW mode appears when the lattice misfit is large and the lattice layer is thin and only in the INPSb/InP and GaPSb/GaP system which have the largest lattice misfit of III-V ternary systems. The stable region of the SK mode in the GaPSb/GaP and InPSb/InP phase diagrams is largest of all because the composition dependence of the strain energy of these systems is stronger than that of the other systems. The critical number of lattice layers below which two-dimensional(2D) layers precede the three-dimensional(3D) nucleation in the SK mode at x=1.0 depends on the lattice misfit.

  • PDF

MOLECULAR DYNAMICS SIMULATION OF INDENTATION ON SILVER COATED COPPER NANOSTRUCTURE

  • Kim, Am-Kee;Trandinh, Long;Kim, Il-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1794-1799
    • /
    • 2008
  • The effect of misfit on the indentation behaviour of silver coated copper multilayer was studied by molecular dynamics simulation. It was found that the misfit bands on interface formed by the mismatch of lattice structure between copper and silver in slip direction [110] and the dislocation band width depended on the mismatched lattice constants of materials. More dislocations were created and glided by indentation, which created a "four-wing flower" structure consisting of pile. up of dislocation at the interface. The size of "flower" depended on the thickness of silver layer. The critical thickness for "flower" was approximately 4nm above which the "flower" disappeared. As the result, deformation mechanisms such as dislocation pile-up, dislocation cross-slip and movement of misfit dislocation were revealed. Only silver atoms in the dislocation pile-up were involved in the creation of the "flower" while the dislocations in copper were glided in slip direction on interface.

  • PDF

A Study on the Precipitation Behavior of $L2_1$-type $Ni_2AlTi$ Phase in B2-Ordered NiAl System (B2-규칙 NiAl계에 $L2_1$$Ni_2AlTi$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.187-194
    • /
    • 2007
  • A transmission electron microscope (TEM) investigation has been performed on the precipitation of $L2_1$-type $Ni_2AlTi$ phase in B2-ordered NiAl system. The hardness after solution treatment is high in NiAl-Ti alloys suggesting the large contribution of solid solution strengthening in this alloy system. However, the amount of age hardening is not large as compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1$-type $Ni_2AlTi$ precipitates keep a lattice coherency with the NiAl matrix. By longer periods of aging $Ni_2AlTi$ precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. Misfit dislocations, which are observed on {100} planes of H-precipitates have the Burgers vector of a <100> with a pure edge type. The lattice misfits of NiAl-$Ni_2AlTi$ system is estimated from the spacings of misfit dislocations to be 1.1% at 1273 K. The lattice misfits decrease with increasing aging temperature in this system.

The Thermal Stability of Mechanically Alloyed Quaternary Al-8wt.%(Ti+V+Zr) Alloys (기계적 합금화한 Al-8wt.%(Ti+V+Zr) 4원계 합금의 열적 안정성에 관한 연구)

  • 김주영
    • Journal of Powder Materials
    • /
    • v.2 no.3
    • /
    • pp.247-254
    • /
    • 1995
  • The theoretical optimum quaternary composition for improving the thermal stability of Al-Ti alloy was recently proposed. On the basis of the suggestion, quaternary Al-Ti-V-Zr alloy powders corresponding to the optimum compositions, one of which belongs to the region of the smallest lattice misfit between the matrix and the precipitates and the other belongs to the region of the smallest rate constant of coarsening, were prepared by mechanical alloying and the powders were vacuum-hot-pressed at $430^{\circ}C$ under the pressure of 800 MPa. The thermal stability of the specimens was evaluated by hardness testing after isothermal aging up to 400 hrs at various temperatures. The decrease of hardness of Al-Ti-V-Zr alloys was smaller than that of Al-Ti alloys. It was considered to be due to the formation of $Al_3Zr$ type and$Al_3Ti$ type quaternary precipitates having smaller lattice misfit than $Al_3Ti$ and the increase of volume fraction of All0v during the isothermal aging. The quaternary Al-Ti-V-Zr alloys corresponding to the smallest lattice misfit showed the most improved thermal stablilty and it was mainly considered to be due to the formation of All0v.

  • PDF

Precipitation of L21-type Ni2AlTi Phase in B2-type Intermetallic Compounds NiTi (B2형 금속간화합물 NiTi 중에 L21형 Ni2AlTi상의 석출)

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.420-424
    • /
    • 2007
  • Precipitation behavior has been studied in NiTi-based ordered alloy using transmission electron microscopy. The hardness after solution treatment is high in NiTi alloy suggesting the large contribution of solid solution strengthening in this alloy system. However, the amount of age hardening is not large as compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1-type$ $Ni_2AlTi$ precipitates keep a lattice coherency with the NiTi matrix. By longer periods of aging $Ni_2AlTi$ precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. Misfit dislocations, which are observed on {100} planes of H-precipitates have the Burgers vector of a <100> with a pure edge type. The lattice misfits of $NiTi-Ni_2AlTi$ system is estimated from the spacings of misfit dislocations to be 1.3% at 1273 K. The lattice misfits decrease with increasing aging temperature in this system.

A First Principles Calculation of the Coherent Interface Energies between Group IV Transition Metal Nitrides and bcc Iron (IV족 천이금속 질화물과 bcc Fe간 계면 에너지의 제일원리 연구)

  • Chung, Soon-Hyo;Jung, Woo-Sang;Byun, Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.473-478
    • /
    • 2006
  • The coherent interface energies and misfit strain energies of Fe/XN (X=Ti, Zr, Hf) systems were calculated by first principles method. The interface energies in Fe/TiN, Fe/ZrN and Fe/HfN systems were 0.343, 0.114, and 0.030 $J/m^2$, respectively. Influence of bond energy was estimated using the discrete lattice plane/nearest neighbor broken bond(DLP/NNBB) model. It was found that the dependence of interface energy on the type of nitride was closely related to changes of the bond energies between Fe, X and N atoms before and after formation of the Fe/XN interfaces. The misfit strain energies in Fe/TiN, Fe/ZrN, and Fe/HfN systems were 0.239, 1.229, and 0.955 eV per 16 atoms(Fe; 8 atoms and XN; 8 atoms). More misfit strain energy was generated as the difference of lattice parameters between the bulk Fe and the bulk XNs increased.

An ab Initio Study of Interfacial Energies between Group IV Transition Metal Carbides and bcc Iron (IV 천이금속 탄화물과 bcc Fe간 계면 에너지의 제일원리 연구)

  • Chung Soon-Hyo;Jung Woo-Sang;Byun Ji-Young
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.566-576
    • /
    • 2005
  • This paper describes an ab Initio study on interface energies, misfit strain energies, and electron structures at coherent interfaces Fe(bcc structure)/MCs(NaCl structure M=Ti, Zr, Hf). The interface energies at relaxed interfaces Fe/TiC, Fe/ZrC and Fe/HfC were 0.263, 0.153 and $0.271 J/m^2$, respectively. It was understood that the dependence of interface energy on the type of carbide was closely related to changes of the binding energies between Fe, M and C atoms before and after formation of the interfaces Fe/MCs with the help of the DLP/NNBB (Discrete Lattice Plane/ Nearest Neighbour Broken Bond) model and data of the electron structures. The misfit strain energies in Fe/TiC, Fe/ZrC and Fe/HfC systems were 0.390, 1.692 and 1.408 eV per 16 atoms(Fe: 8 atoms and MC; 8 atoms). More misfit energy was generated as difference of lattice parameters between the bulk Fe and the bulk MCs increased.

Determination of Lattice Parameters and Observation of Lattice Misfits on Rene 80 Cast Blades (Rene 80 주조블레이드에서 격자상수의 결정 및 격자어긋남의 관찰)

  • An, Seong-Uk
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.515-520
    • /
    • 1993
  • By the real use of Rene 80 cast blades at high temperature ${\gamma}^{\prime}$ precipitates in the matrix(${\gamma}$) mainly due to the operating temperature. These precipitates play main role for strenthening of the blades. Generally known that dislocation density increases due to ${\gamma}-{\gamma}^{\prime}$ mismatch by the generation and growth of the precipitates, because the lattice parameter of ${\gamma}^{\prime}$ is higher than that of ${\gamma}$. These lattice parameters of ${\gamma}$ and ${\gamma}^{\prime}$ are determined through the CBED(Convergent Beam Electron Diffraction) method by STEM(Scanning Transmission Electron Microscope) in this work. And also studied, whether and how much the dislocation density increases by the generation and growth of the precipitates.

  • PDF

A Study on the Precipitation Behavior of $L2_1$-type Precipitates in B2-NiAl (B2형 NiAl에 석출한 $L2_1$형 석출상의 석출거동에 관한 연구)

  • Han, Chang-Suk;Han, Seung-Oh;Lee, Ju-Hee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.6
    • /
    • pp.345-353
    • /
    • 2009
  • The precipitates of $L2_1$-type $Ni_2AlHf$ phase in B2-ordered NiAl system has been observed by using transmission electron microscope (TEM). The hardness of as-quenched NiAl-Hf alloys is high due to the larger strengthening. However, age hardening of this alloy is not main effect to increase hardness compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1$-type $Ni_2AlHf$ precipitates keep a lattice coherency with the NiAl matrix. The orientation relationship between the $Ni_2 AlHf$ precipitate and the NiAl matrix is <100>$_{Ni2AlHf}$//<100>$_{NiAl}$, {001}$_{Ni2AlHf}$//{001}$_{NiAl}$. By aging treatment for long time $Ni_2AlHf$ precipitates lost their coherency and change their morphology to the spherical ones surrounded by misfit dislocations. The orientation relationship between the NiAl matrix and the $Ni_2AlHf$ precipitates, however, has been kept even after longer aging time. The lattice misfit between the $Ni_2AlHf$ precipitate and the NiAl matrix has been calculated by the selected electron diffraction patterns, and the spacings of misfit dislocations is about 4.5% at 1173 K.