• Title/Summary/Keyword: lattice energy

Search Result 688, Processing Time 0.028 seconds

Superconducting properties and microstructure of electron beam irradiated MgB2 superconductors

  • Kim, C.J.;Lee, Y.J.;Cho, I.H.;Jun, B.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.1
    • /
    • pp.18-22
    • /
    • 2022
  • The effect of electron beam (EB) irradiation on superconducting properties and microstructures of MgB2 bulk superconductors were investigated. At E-beam doses of 1×1016 e/cm2 and 1×1017 e/cm2, the effect of irradiation on a superconducting transition temperature (Tc) of MgB2 was weak. As a dose increases to 5×1017 e/cm2, Tc decreases by 0.5 K. The critical current density (Jc) measured at 4.2 K and 20 K, and 0 T - 5 T increases slightly as exposure time increases. X-ray diffraction for the irradiation surface of MgB2 shows that the diffraction intensity of (hkl) peaks decreases proportionally as the exposure time increases. This indicates that the crystallinity of MgB2 was degraded by irradiation. TEM investigation for the irradiated sample showed distorted lattice structure, which is consistent with the XRD results. The Jc increase and Tc reduction of MgB2 by irradiation are believed to be caused by the lattice distortion.

Multidisciplinary Design Optimization(MDO) of a Medium-Sized Solar Powered HALE UAV Considering Energy Balancing (에너지 균형조건을 고려한 중형 태양광 추진 고고도 장기체공 무인기의 다분야 통합 최적설계)

  • Park, Kyung-Hyun;Min, Sang-Gyu;Ahn, Jon;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.129-138
    • /
    • 2012
  • A MDO study of a midium-sized solar powered High Altitude Long Endurance (HALE) UAV has been performed, focused on energy balance. In the MDO process, Vortex Lattice Method(VLM) is employed for the aerodynamic modeling of the vehicle, of which structural weight is estimated with the modeling proposed by Cruz. Tail volume ratios have been set as constants, while the location of tail surfaces is determined from longitudinal static stability criterion. By balancing the available energy from solar cells, battery, and altitude, with the energy-requirement of the vehicle, the possibility of continuous flight over 24-hours has been investigated. The solar radiation level is set as that of summer at the latitude of $36^{\circ}$ north. During the daytime, the aircraft climbs using solar energy, accumulating potential energy, which supplements energy balance during the night. Optimizations have been sought in size of the vehicle, its weight distribution, and flight strategy.

Application of Monte Carlo Simulation to Intercalation Electrochemistry I. Thermodynamic Approach to Lithium Intercalation into LiMn2O4 Electrode

  • Kim, Sung-Woo;Pyun, Su-Il
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.79-85
    • /
    • 2002
  • The present article is concerned with the application of the Monte Carlo simulation to electrochemistry of lithium intercalation from the thermodynamic view point. This article first introduced the fundamental concepts of the ensembles, and Ising and lattice gas models in statistical thermodynamics for the Monte Carlo simulation in brief. Finally the Monte Carlo method based upon the lattice gas model was employed to analyse thermodynamics of the lithium intercalation into the transition metal oxides. Especially we dealt with the thermodynamic properties as the electrode potential curve and the partial molar internal energy and entropy of lithium ion in the case of the $LiMn_2O_4$ electrode, and consequently confirmed the utility of the Monte Carlo method in the field of electrochemistry of the lithium intercalation.

Degradation of thin carbon-backed lithium fluoride targets bombarded by 68 MeV 17O beams

  • Y.H. Kim;B. Davids;M. Williams;K.H. Hudson;S. Upadhyayula;M. Alcorta;P. Machule;N.E. Esker;C.J. Griffin;J. Williams;D. Yates;A. Lennarz;C. Angus;G. Hackman;D.G. Kim;J. Son;J. Park;K. Pak;Y.K. Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.919-926
    • /
    • 2023
  • To analyze the cause of the destruction of thin, carbon-backed lithium fluoride targets during a measurement of the fusion of 7Li and 17O, we estimate theoretically the lifetimes of carbon and LiF films due to sputtering, thermal evaporation, and lattice damage and compare them with the lifetime observed in the experiment. Sputtering yields and thermal evaporation rates in carbon and LiF films are too low to play significant roles in the destruction of the targets. We estimate the lifetime of the target due to lattice damage of the carbon backing and the LiF film using a previously reported model. In the experiment, elastically scattered target and beam ions were detected by surface silicon barrier (SSB) detectors so that the product of the beam flux and the target density could be monitored during the experiment. The areas of the targets exposed to different beam intensities and fluences were degraded and then perforated, forming holes with a diameter around the beam spot size. Overall, the target thickness tends to decrease linearly as a function of the beam fluence. However, the thickness also exhibits an increasing interval after SSB counts per beam ion decreases linearly, extending the target lifetime. The lifetime of thin LiF film as determined by lattice damage is calculated for the first time using a lattice damage model, and the calculated lifetime agrees well with the observed target lifetime during the experiment. In experiments using a thin LiF target to induce nuclear reactions, this study suggests methods to predict the lifetime of the LiF film and arrange the experimental plan for maximum efficiency.

Modification of RFSP to Accommodate a True Two-Group Treatment

  • Bae, Chang-Joon;Kim, Bong-Ghi;Suk, Soo-Dong;D. Jenkins;B. Rouben
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.185-190
    • /
    • 1996
  • RFSP is a computer program to do fuel management calculations for CANDU reactors. Its main function is to calculate neutron flux and power distributions using two-energy-group, three dimensional neutron diffusion theory. However, up to now the treatment has not been true two-group but actually "one-and-half groups". In other words, the previous (1.5-group) version of RFSP lumps the fast fission term into the thermal fission term. This is based on the POWDERPUFS-V Westcott convention. Also, there is no up-scattering term or bundle power over cell flux (H1 factor) for the fast group. While POWDERPUFS-V provides only 1.5 group properties, true two-group cross sections for the design and analysis of CAUDU reactors can be obtained from WIMS-AECL. To treat the full two-group properties, the previous RFSP version was modified by adding the fast fission, up-scatter terms, and H1 factor. This two-group version of RFSP is a convenient tool to accept lattice properties from any advanced lattice code (e.g. WIMS-AECL DRAGON, HELIOS...) and to apply to advanced fuel cycles. In this study, the modification to implement the true two-group treatment was performed only in the subroutines of the *SIMULATE module of RFSP. This module is the appropriate one to modify first, since it is used for the tracking of reactor operating histories. The modified two-group RFSP was evaluated with true two-group cross sections from WIMS-AECL. Some tests were performed to verify the modified two-group RFSP and to evaluate the effects of fast fission and up-scatter for three core conditions and four cases corresponding to each condition. The comparisons show that the two-group results are quite reasonable and serve as a verification of the modifications made to RFSP. To assess the long-term impact of the full 2-group treatment, it is necessary to simulate a long period (several months) of reactor history. It will also be necessary to implement the full two-group treatment of reactivity devices and assess the reactivity-device worths.ce worths.

  • PDF

A Study of Activated Sintering Mechanism of $UO_2$ Powder by High Temperature X-Ray Diffractometry

  • Lee, Byoung-Whie;Suh, Kyung-Soo
    • Nuclear Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.132-136
    • /
    • 1972
  • The mechanism for activated sintering of UO$_2$by an addition of 0.05 w/o TiO$_2$was investigated using a high temperature X-ray diffractometer. The diffraction pattern of UO$_2$pellets was studied in a temperature range from room temperature to 120$0^{\circ}C$ in hydrogen atmosphere. At 120$0^{\circ}C$, the expansion of UO$_2$lattice were 1.448% and 1.354% greater when it was compared with those at room temperature for pellets with and without the 0.05 w/o TiO$_2$addition, respectively-The effect of the TiO$_2$addition is to increase the lattice constant of UO$_2$by 0.094% at 120$0^{\circ}C$. The lattice constant at 120$0^{\circ}C$without the TiO$_2$addition is equal to that at 108$0^{\circ}C$ with the 0.05 w/o TiO$_2$addition. This temperature difference could be well compared with the suppression of sintering temperature by TiO$_2$hat had been observed Previously. It is believed that the increase in lattice expansion due to the TiO$_2$addition would give rise to the activated sintering of UO$_2$by the lattice-expansion-induced-enhancement of self diffusion.

  • PDF

Effects of electron beam irradiation on the superconducting properties of YBCO thin films

  • Lee, Y.J.;Choi, J.H.;Jun, B.H.;Joo, J.;Kim, C.S.;Kim, C.J.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.15-20
    • /
    • 2016
  • The effects of electron beam (EB) irradiation on the superconducting critical temperature ($T_c$) and critical current density ($J_c$) of YBCO films were studied. The YBCO thin films were irradiated using a KAERI EB accelerator with an energy of 0.2 MeV and a dose of $10^{15}-10^{16}e/cm^2$. A small $T_c$ decrease and a broad superconducting transition were observed as the EB dose increased. The value of $J_cs$ (at 20 K, 50 K and 70 K) increased at doses of $7.5{\times}10^{15}$ and $2.2{\times}10^{16}e/cm^2$. However, $J_cs$ decreased as the dose increased further. The X-ray diffraction (XRD) analysis showed that the c axis of YBCO was elongated and the full width at half maximum (FWHM) increased as the dose increased, which is strong evidence of the atomic displacement by EB irradiation. The transmission electron microscopy (TEM) showed that the amorphous layer formed in the vicinity of the surfaces of the irradiated films. The amorphous phase was often present as an isolated form in the interior of the films. In addition to the formation of the amorphous phase, many striations running along the a-b direction of YBCO were observed. The high magnification lattice image showed that the striations were stacking faults. The enhancement of $J_c$ by EB irradiation is likely to be due to the lattice distortion and the formation of defects such as vacancies and stacking faults. The decrease in $J_c$ at a high EB dose is attributed to the extension of the amorphous region of a non-superconducting phase.

Optical Properties and Thermodynamic Function Properties of Undoped and Co-Doped $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ Single Crystals ($Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$$Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$:$Co^{2+}$ 단결정의 광학적 특성과 열역학 함수 추정)

  • Hyun, Seung-Cheol;Park, Hjung;Park, Kwang-Ho;Oh, Seok-Kyun;Kim, Hyung-Gon;Kim, Nam-Oh
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.7
    • /
    • pp.275-281
    • /
    • 2003
  • $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$ and $Zn_{0.5}Cd_{0.5}Al_{2}Se_{4}$:$Co^{2+}$ single crystals were grown by CTR method. The grown single crystals have defect chalcopyrite structure with lattice constant a=5.5966$\AA$, c=10.8042$\AA$ for the pure, a=5.6543$\AA$, c=10.8205$\AA$ for the Co-doped single crystal, respectively. The optical energy band gap was given as indirect band gap. The optical energy band gap was decreased according to add of Co-impurity Temperature dependence of optical energy band gap was fitted well to the Varshni equation. From this relation, we can deduced the entropy, enthalpy and heat capacity. Also, we can observed the Co-impurity optical absorption peaks assigned to the $Co^{2+}$ ion sited at the $T_{d}$ symmetry lattice and we consider that they were attributed to the electron transitions between energy levels of ions.

Effect of Mixing Ratio of Active Material on the Wettability in Lithium-Ion Battery Using Lattice Boltzmann Method (격자 볼츠만법을 이용한 리튬이온전지의 활물질 혼합비에 대한 함침성의 영향)

  • Jeon, Dong Hyup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.1
    • /
    • pp.47-53
    • /
    • 2016
  • The electrolyte wetting phenomena occurring in the electrode of lithium-ion battery was studied using lattice Boltzmann method (LBM). Recently, lithium-ion batteries are being mixed with small particles on the active material to increase the capacity and energy density during the electrode design stage. The change to the mixing ratio may influence the wettability of electrolyte. In this study, the changes in electrolyte distribution and saturation were investigated according to various mixing ratios of active material. We found that the variations in mixing ratio of active material affect the wetting mechanism, and result in changes to the wetting speed and wettability of electrolyte.

Prediction for the Performance and Wakes of a Counter-Rotating Wind Turbine Using the Vortex Lattice Method (와류격자기법을 이용한 Counter-Rotating 풍력 발전기의 성능 및 후류 해석 연구)

  • Lee, Seungmin;Son, Eunkuk;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.40.2-40.2
    • /
    • 2011
  • A Counter-rotating wind turbine is one of the new concepts that are proposed to increase the performance of a wind turbine. It has two rotors rotating in the same axis, and it is known that its power coefficient can reach to 0.64 in the ideal case. While the BEMT is widely used to analyze the aerodynamic performance of wind turbines, the analysis of the counter-rotating wind turbine by using it is limited due to the aerodynamic interaction between the two rotors. In this study, the vortex lattice method is used to consider the effect of the front rotor on the rear rotor of the counter-rotating wind turbine and calculate the aerodynamic performance of it. The power and thrust sharing in the two rotors of the counter-rotating wind turbine are predicted and the total power and thrust are compared with that of a single rotor. Moreover, the wake convection and expansion rate is also compared with that of a single rotor.

  • PDF