• 제목/요약/키워드: lateral-distortional buckling

검색결과 12건 처리시간 0.022초

Inelastic distortional buckling of hot-rolled I-section beam-columns

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • 제4권1호
    • /
    • pp.23-36
    • /
    • 2004
  • The inelastic lateral-distortional buckling of doubly-symmetric hot-rolled I-section beam-columns subjected to a concentric axial force and uniform bending with elastic restraint which produce single curvature is investigated in this paper. The numerical model adopted in this paper is an energy-based method which leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtained. The elastic restraint considered in this paper is full restraint against translation, but torsional restraint is permitted at the tension flange. Hitherto, a numerical method to analyse the elastic and inelastic lateral-distortional buckling of restrained or unrestrained beam-columns is unavailable. The prediction of the inelastic lateral-distortional buckling load obtained in this study is compared with the inelastic lateral-distortional buckling of restrained beams and the inelastic lateral-torsional buckling solution, by suppressing the out-of-plane web distortion, is published elsewhere and they agree reasonable well. The method is then extended to the lateral-distortional buckling of continuously restrained doubly symmetric I-sections to illustrate the effect of web distortion.

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • 제20권1호
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Elastic lateral-distortional buckling of I-beams and the Meck Plot

  • Zirakian, Tadeh;Nojoumi, Seyed Ali
    • Structural Engineering and Mechanics
    • /
    • 제37권3호
    • /
    • pp.297-307
    • /
    • 2011
  • Meck Plot is an adapted version of the well-known Southwell method to the case of lateral-torsional buckling, which indeed reflects the physical inter-dependence of lateral flexure (lateral displacement) and torsion (rotation) in the structure. In the recent reported studies, it has been shown experimentally and theoretically that lateral displacement of an I-beam undergoing elastic lateral-distortional mode of buckling is interestingly directly coupled with other various deformation characteristics such as web transverse strain, web longitudinal strain, vertical deflection, and angles of twist of top and bottom flanges, and consequently good results have been obtained as a result of application of the Meck's method on lateral displacement together with each of the aforementioned deformation variables. In this paper, it is demonstrated that even web transverse and longitudinal strains, vertical deflection, and angles of twist of top and bottom flanges of an I-beam undergoing elastic lateral-distortional buckling are two-by-two directly coupled and the application of the Meck Plot on each pair of these deformation variables may still yield reliable predictions for the critical buckling load.

Distortional buckling calculation method of steel-concrete composite box beam in negative moment area

  • Zhou, Wangbao;Li, Shujin;Jiang, Lizhong;Huang, Zhi
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1203-1219
    • /
    • 2015
  • 'Distortional buckling' is one of the predominant buckling types that may occur in a steel-concrete composite box beam (SCCBB) under a negative moment. The key factors, which affect the buckling modes, are the torsional and lateral restraints of the bottom plate of a SCCBB. Therefore, this article investigates the equivalent lateral and torsional restraint rigidity of the bottom plate of a SCCBB under a negative moment; the results of which show a linear coupling relationship between the applied forces and the lateral and/or torsional restraint stiffness, which are not depended on the cross-sectional properties of a SCCBB completely. The mathematical formulas for calculating the lateral and torsional restraint rigidity of the bottom plate can be used to estimate: (1) the critical distortional buckling stress of SCCBBs under a negative moment; and (2) the critical distortional moment of SCCBBs. This article develops an improved calculation method for SCCBBs on an elastic foundation, which takes into account the coupling effect between the applied forces and the lateral and/or torsional restraint rigidity of the bottom plate. This article analyzes the accuracy of the following calculation methods by using 24 examples of SCCBBs: (1) the conventional energy method; (2) the improved calculation method, as it has been derived in this article; and (3) the ANSYS finite element method. The results verify that the improved calculation method, as it has been proved in this article, is more accurate and reliable than that of the current energy method, which has been noted in the references.

Inelastic lateral-distortional buckling of continuously restrained rolled I-beams

  • Lee, Dong-Sik;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • 제2권4호
    • /
    • pp.297-314
    • /
    • 2002
  • An energy method of analysis is presented which can be used to study the inelastic lateral-distortional buckling of hot-rolled I-sections continuously restrained at the level of the tension flange. The numerical modelling leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtainable, so as to enable a study of the factors that influence the strength of continuously restained I-beams to be made. Although hot-rolled I-sections generally have stocky webs and are not susceptible to reductions in their overall buckling loads as a result of cross-sectional distortion, the effect of elastic restraints, particularly against twist rotation, can lead to buckling modes in which the effect of distortion is quite severe. While the phenomenon has been studied previously for elastic lateral-distortional buckling, it is extended in this paper to include the constitutive relationship characteristics of mild steel, and incorporates both the so-called 'polynomial' and 'simplified' models of residual stresses. The method is validated against inelastic lateral-torsional buckling solutions reported in previous studies, and is applied to illustrate some inelastic buckling problems. It is noted that over a certain range of member slenderness the provisions of the Australian AS4100 steel standard are unconservative.

Inelastic distortional buckling of cantilevers

  • Lee, Dong-Sik;Bradford, Mark Andrew
    • Steel and Composite Structures
    • /
    • 제3권1호
    • /
    • pp.1-12
    • /
    • 2003
  • Cantilevers are unique statically determinate structural elements with respect to their mode of overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange that deflects greatest during overall buckling. While this phenomenon does not complicate the calculation of the lateral buckling load, either theoretically or in structural design codes, it has been shown in previous research that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced in the elastic buckling of simply supported beams. This paper extends the study of the distortional buckling of cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element method for studying the inelastic bifurcative instability of members whose cross-sections may distort during buckling is described, and the efficacy of the method is demonstrated. It is then used to study the inelastic distortional buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which may be restrained elastically from buckling by other structural elements.

Inelastic lateral-distortional buckling of continuously restrained continuous beams

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • 제5권4호
    • /
    • pp.305-326
    • /
    • 2005
  • The inelastic buckling behaviour of continuously restrained two and three-span continuous beams subjected to concentrated loads and uniformly distributed loads are studied in this paper. The restraint type considered in this paper is fully restrained against translation and elastic twist applied at the top flange. These types of restraints are most likely experienced in industrial structures, for example steel-concrete composite beams and half through girders. The buckling analysis of continuous beam consists of two parts, firstly the moment and shear distribution along the member are determined by employing force method and the information is then used for an out-of-plane buckling analysis. The finite element method is incorporated with so-called simplified and the polynomial pattern of residual stress. Owing to the inelastic response of the steel, both the in-plane and out-of-plane analysis, which is treated as being uncoupled, extend into the nonlinear range. This paper presents the results of inelastic lateral-torsional and lateral-distortional buckling load and finally conclusions are drawn regarding the web distortion.

Elastic distortional buckling of tapered composite beams

  • Bradford, M.A.;Ronagh, H.R.
    • Structural Engineering and Mechanics
    • /
    • 제5권3호
    • /
    • pp.269-281
    • /
    • 1997
  • The overall buckling mode in a composite steel-concrete beam over an internal support is necessarily lateral-distortional, in which the bottom compressive range displaces laterally and twists, since the top flange is restrained by the nearly rigid concrete slab. An efficient finite element method is used to study elastic lateral-distortional buckling in composite beams whose steel portion is tapered. The simplified model for a continuous beam that is presented herein is a fixed ended cantilever whose steel portion is tapered, and is subjected to moment gradient. This is intended to give an insight into distortion in a continuous beam that occurs in the negative bending region, and the differences between the cantilever representation and the continuous beam are highlighted. An eigenproblem is established, and the buckling modes and loads are determined in the elastic range of structural response. It is found from the finite element study that the buckling moment may be enhanced significantly by using a vertical stiffener in the region where the lateral movement of the bottom range is greatest. This enhancement is quantified in the paper.

Elastic distortional buckling of overhanging beams

  • Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제4권1호
    • /
    • pp.37-47
    • /
    • 1996
  • The paper considers the elastic distortional buckling of overhanging beams, which consist of an internal segment with a cantilevered segment continuous over an internal support. The beams were considered loaded by a concentrated load at the cantilever tip, and the beams were either partially restrained or laterally restrained over the internal support. An efficient line-type finite element developed previously by the author was modified to incorporate loading remote from the shear centre, as well as to allow for lateral buckling without distortion. Buckling loads were obtained for a range of geometry when the load was placed on the top flange, at the shear centre or on the bottom flange. Buckling mode shapes were also obtained, and conclusions drawn regarding the influence of distortion on the overall buckling load.

횡방향 하중을 받는 I형강 단순보의 비탄성 좌굴거동 (Inelastic Buckling Behavior of Simply Supported I-Beam under Transverse Loading)

  • 이동식;오순택
    • 한국강구조학회 논문집
    • /
    • 제16권1호통권68호
    • /
    • pp.155-167
    • /
    • 2004
  • 각각 집중하중과 등분포하중을 받는 단순보의 비탄성 횡-비틀림 좌굴에 대하여 연구하였다. 잔류응력을 단순형과 다항식형으로 하여 line-type 유한요소법으로 해석하였다. 잔류응력의 형태는 플랜지에서는 4차 곡선으로 웨브에서는 2차 곡선으로 가정하였다. 우리나라에서 생산되는 4종류의 I형강에 대하여 비탄성 횡-비틀림 좌굴에 대하여 해석한 후 결과를 강구조편람의 내용과 비교하였다. 해석결과로부터 강구조 편람에 의한 설계는 주보에 보조보가 있는 경우나 없는 경우 모두 전반적으로 과설계임을 알 수 있었다.