• Title/Summary/Keyword: lateral stress coefficient

Search Result 49, Processing Time 0.02 seconds

Pillar Width of Twin Tunnels in Horizontal Jointed Rock Using Large Scale Model Tests (대형모형실험을 통한 수평 절리암반에서의 병설터널 이격거리)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.352-359
    • /
    • 2010
  • Stability of twin tunnels depends on the pillar width and the ground condition. In this study, large scale model tests were conducted for investigating the influence of the pillar width of twin tunnels on their behavior in the regular horizontal jointed rock mass. Jointed rocks was composed of concrete blocks. Pillar width of twin tunnels varied in 0.29D, 0.59D, 0.88D and 1.18D, where D is the tunnel width. During the test, pillar stress, lining stress, tunnel distortion, and ground displacement were measured. Lateral earth pressure coefficient was kept in a constant value 1.0. As a result, it was found that the pillar stress and the displacement of the ground and tunnel were increased by decreasing pillar width. The maximum displacement rate was measured just after the upper excavation in each construction sequence. And the maximum influence position was the right shoulder of the preceeding tunnel at the pillar side. It was also found that for the stability assessment the inner displacement was more critical than the crown displacement. The influence zone was formed at the pillar width 0.59D~0.88D that was smaller than 0.8D~2.0D, which was proposed by experience for a good ground condition. And it would be concluded that horizontal joints could also influence on the stability of the twin tunnels.

A Study on Properties of Mechanical Behaviors of Concrete Confined by Circular Steel Tube (원형강관으로 구속된 콘크리트의 역학적 거동 특성에 관한 연구)

  • 박정민;김화중
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.199-210
    • /
    • 1995
  • We could say that the concrete filled steel tube structure is superior in the vlew of various structure properties as to promote improvement of structural capacity to dtmonstrate heterogeneous material properties interdependently. The compressive strength is increased by putting to tri axial stress because lateral expansion of concrete 1s confined by the steel tube, when concrete conflned by steel tube fall under centric axial load. Also, it have an advantage that decreasr of load carrying capacity 1s small, not occuring section deficiency due to protect falling piienornonon by co~nprrssion fallurc of concrete. So this study investigated for structural behaviors yroprrtiex of concwir. confined by steel tube throughout a series of experlmerit with kcy parxncter, such as diameter-to-thickness(D / t) ratio, strength of concrete as a study on properties of structural behaviors of confined concrete confined by circular steel tube( tri axial stress). Frorn the expcrment results, the obtained results, are surnrnarised as foliow. (1) The restraint effect of concrete by steel tube was presented significantly as the D /t ratio of steel tube and the strength of filled concrete decrease, and the confined concrete by circular steel tube was increased respectively twice as much as 4-7 in deformation capacity at the ultimate strength ,compared with those of non-confined concrete, so expected to increase flexible effect of concrete. (2) The emprical formula to predict the ultimate capacity of confined concrete by steel tube and concrete filled steel tube column using restraint coefficient of concrete were proposed.

Consolidation Characteristics of Clay and Pond Ash Soil Mixture (점토와 매립회 혼합토의 압밀특성)

  • Chae, Deok-Ho;Yune, Chan-Young;Kim, Kyoung-O;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.45-54
    • /
    • 2011
  • In this study, the consolidation characteristics are investigated on the artificial soil mixture of kaolinite, fine soils representing dredged soils and reclaimed coal ash from the ash ponds. A large sedimentation chamber was designed and manufactured to produce the artificial soil mixture with uniform stress history. In order to examine the consolidation characteristics in lateral and vertical directions, standard consolidation and Rowe Cell tests were performed. From the results of standard consolidation tests, the artificial soil mixture with coal ash showed lower compressibility and the larger consolidation coefficients enough to aid in early stabilization of the reclaimed sites compared with the kaolinite only. Also, in order to examine the consolidation characteristics when applying vertical drains, the drainage material was installed and tested in the Rowe Cell. The Rowe Cell test results show that the artificial soil mixture yields higher coefficient of consolidation. Thus, the application of artificial soil mixture on the reclaimed sites can shorten the consolidation time.

Analysis of the Hydraulic Behaviour in the Nearshore Zone by a Numerical Model (수치모형에 의한 연안해역 해수운동의 분석)

  • Lee, Hee-Young;Jeoung, Sun-Kil
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.73-83
    • /
    • 1994
  • The unproper development of the nearshore zone can enhance the diffusion of pollutant in the nearshore zone resulting in unbalanced sediment budget of beach which causes alteration of beach topography. Therefore, it is required to predict the effects of the envirnmental change quantitatively. In this paper, the depth-averaged and time-averaged energy balance equation is selected to acount for the wave transformation such as refraction, shoaling effect, the surf zone energy disipation, wave breaking index and bore, due to wave breaking in the shore region.(Numerical solutions are obtained by a finite difference method, ADI and Upwind. For the calculation of the wave-induced current, the unsteady nonlinear depth-averaged and time-averaged governing equation is derived based on the continuity and momentum equation for imcompressible fluid.) Numerical solutions are obtained by finite difference method considering influences of factors such as lateral mixing coefficient, bed shear stress, wave direction angle, wave steepness, wave period and bottom slope. The model is applied to the computation of wave transformation, wave-induced current and variation of mean water leel on a uniformly sloping beach.

  • PDF

Finite Element Dynamic Analysis of a Vertical Pile by Wave and Tidal Current (파도와 조류에 의한 수직 파일의 유한요소 동적거동 해석)

  • 박문식
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.183-192
    • /
    • 2004
  • New dynamic analysis procedures lot the vertically drilled sea water pile are suggested and demonstrated by the typical design Problem. Pile structure submerged in the sea water as well as forces by the ocean waves and tidal currents are modeled and formulated by finite element method. To obtain wave forces for the finite element equation, Airy's wave theory is tested and selected among others. Lateral lifting forces induced by the vortex shedding of current flow is simply based on the harmonic function with the Strouhal frequency and lifting coefficient. Natural frequencies and frequency responses for the pile are calculated by NASTRAN using the results of the formulation. Dynamic displacement and stress results obtained by these procedures are shown to be applicable to predict the dynamic behaviors of the ocean pile by the wave and lifting forces as a preliminary design analysis.

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Effect of the Radius of Curvature on the Contact Pressure Applied to the Endplate of the Sliding Core in an Artificial Intervertebral Disc (인공추간판 슬라이딩 코어의 곡률반경 변화가 종판의 접촉압력에 미치는 영향)

  • Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • The treatments for spinal canal stenosis are radicular cyst removal, spine fusion, and implantation of an artificial intervertebral disc. Artificial intervertebral discs have been most widely used since the mid-2000s. The study of artificial intervertebral discs has been focused on the analysis of the axial rotation, lateral bending, the degrees of freedom of the disc, and flexion-extension of the vertebral body. The issue of fatigue failure years after the surgery has arisen as a new problem. Hence, study of artificial intervertebral discs must be focused on the fatigue failure properties and increased durability of the sliding core. A finite element model based on an in the artificial intervertebral disc (SB Charit$\acute{e}$ III) was produced, and the influence of the radius of curvature and the change in the coefficient of friction of the sliding core on the von-Mises stress and contact pressure was evaluated. Based on the results, new artificial intervertebral disc models (Models-I, -II, and -III) were proposed, and the fatigue failure behavior of the sliding core after a certain period of time was compared with the results for SB Charit$\acute{e}$ III.

Seismic Performance Evaluation of Mechanically Jointed PE Pipeline by Response Displacement Method (기계식 이음 PE관의 응답변위법 기반 내진성능평가 요령)

  • DongSoon Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.23-32
    • /
    • 2023
  • The seismic performance of buried PE pipes is reported to be favorable due to their exceptional elongation capacity at break. Although a seismic performance evaluation procedure based on the response displacement method has been summarized in Korea for fusion-bonded PE pipes, there is currently no procedure available for mechanically jointed PE pipes. This article aims to present a seismic performance evaluation procedure based on the response displacement method specifically designed for mechanically jointed PE pipes in Korea. When employing the mechanical joining method for PE pipes, it is recommended to adhere to the evaluation procedure established for segment-type pipes. This involves assessing the stress induced by the pipe, the expansion and contraction strain of the joint, and the bending angle of the pipe joint. Furthermore, the coefficient of inhomogeneity of the soil, which is necessary for estimating the axial strain of the ground, is introduced. Additionally, a computation method for determining lateral displacement and reconsolidation settlement in soil susceptible to liquefaction is proposed. As a result of the sensitivity analysis considering the typical soil condition in Korea, the mechanically jointed PE pipe with a certain quality was shown to have good structural seismic safety when soil liquefaction was not considered. This procedure serves as a valuable tool for seismic design and evaluating the seismic performance of mechanically joined buried PE pipes, which are primarily utilized for connecting small-diameter pipes.