• Title/Summary/Keyword: lateral stress

Search Result 806, Processing Time 0.029 seconds

A Study on the Structural Performance of Retrofitted RC Shear Walls with An Opening (피해를 입은 전단벽의 보강 후 구조성능 평가)

  • Kim, Hyun-Min;Choi, Youn-Cheul;Choi, Chang-Sik;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.234-237
    • /
    • 2006
  • A series of three shear wall specimens was tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the seismic retrofit that had been proposed for the shear wall with the opening induced by remodeling. One of these specimens was tested in the as-built condition and the other two were retrofitted prior to testing. The retrofit involved the use of carbon fiber sheets and steel plates (thickness of 3mm) over the entire face of the wall. The test results show that the ultimate failure modes of the specimens were found to be shear fracture of the wall around the opening and two difference types of retrofitting strategy make the different effects of a rise in the strength of each specimen.

  • PDF

A Case study on reinforced retaining wall backfilled by soil cement (쏘일시멘트 보강토옹벽 사례 연구)

  • Lee, Myung-Jae;Jang, Ki-Soo;Lee, Jin-Hwan;Paik, Min-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.985-994
    • /
    • 2004
  • The application of the reinforced retaining wall has increased in the last 10 years in Korea. The height of reinforced wall is generally limited to less than 15m. It has been reported that the reinforced wall higher than 10m should have higher strength reinforcement or should reduce the lateral earth pressure of the reinforced wall to secure the stability of the wall. In this study, the reinforced retaining wall was constructed 14m high, backfilled by a mixture of soil and cement and instrumented on the reinforcement elements. The instrumented reinforced wall was monitored during and after construction. Field monitoring result shows that a backfill by a mixture of soil and cement reduced the tensile stress developed on the reinforcing elements and the reinforced wall backfilled by a mixture of soil and cement performed successful.

  • PDF

Earthquake Response Analysis of Ordinary Moment Resisting Steel Frames (일반 모멘트 저항 철골조의 지진 응답 해석)

  • Yoon, Myung-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.4 no.1
    • /
    • pp.36-45
    • /
    • 2004
  • Allowable stress design method have been most widely used in steel structure in Korea. Recently, not only high-rise buildings but also medium or low-rise buildings were designed as steel structure. Most of low-rise steel buildings are designed as ordinary moment resisting frames(MRF). But MRFs don't have any lateral force resisting devices such as bracing in braced frames. This study focuses mainly on nonlinear seismic response analyses of small scale steel frames which will be used later as specimens for the evaluation of MRF's seismic performances. The main parameters of analyses are arrangement of column axis, $P-{\Delta}$ effect, acceleration factor etc. The object of this paper is to estimate the seismic performances of MRFs, which are mostly designed in Korea, through the results of response analyses.

  • PDF

Flow in turbulent boundary layers with coriolis force (코리올리힘 이 作용하는 亂流境界層內 의 流動 에 관한 硏究)

  • 이규한
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.2
    • /
    • pp.181-189
    • /
    • 1985
  • The effect of the Coriolis force on the 2-D turbulent boundary layer which is developed in the side wall of the rotating rectangular flow channel was investigated. In this study, we measured mean velocities, turbulent velocity components(axial as well as lateral ones) and Reynolds stresses of the turbulent boundary layer. For high Reynolds number flows, the turbulent boundary layer without pressure gradient is hardly affected by the rotation. For low Reynolds number flows, however, the shearing stress at suction side decreases. Consequently, the velocity near the wall become slower so that the thickness of the viscous sublayer expands. On the other hand, the velocity near the wall at pressure side turns out increased.

Seismic Design of Structures with Knee Braces (knee brace가 설치된 구조물의 내진설계)

  • 김진구;서영일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.274-281
    • /
    • 2002
  • In this study a analytical model for a structure with buckling-restrained unbonded knee-braces is proposed, and a performance-based seismic design procedure for such a system Is provided. The proposed structure system has advantage of simplifying the structural design procedure in that the hinge-connected main structural members, such as beams and columns, are designed only for gravity loads, and all the lateral seismic load is resisted by the braces. The design procedure is based on the concept of equivalent damping, and is implemented to the capacity spectrum method. Parametric study is performed with design variables such as yield stress and cross-sectional area of knee-braces to find out proper slope of the braces.

  • PDF

Vibration Analysis of an Axially Moving Membrane with In-Plane/out-of-Plane Deformations (면내/면외변형을 고려한 이송되는 박막의 진동해석)

  • 신창호;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.164-168
    • /
    • 2004
  • The vibration analysis of an axially moving membrane are investigated when the membrane has the two sets of in-plane boundary conditions, which are free and fixed constraints in the lateral direction. Since the in-plane stiffness is much higher than the out-of-plane stiffness, it is assumed during deriving the equations of motion that the in-plane motion is in a steady state. Under this assumption. the equation of out-of\ulcornerplane motion is derived, which is a linear partial differential equation influenced by the in-plane stress distributions. After discretizing the equation by using the Galerkin method, the natural frequencies and mode shapes are computed. In particular, we put a focus on analyzing the effects of the in-plane boundary conditions on the natural frequencies and mode shapes of the moving membrane.

  • PDF

Joint Shear Behavior Prediction for RC Beam-Column Connections

  • LaFave, James M.;Kim, Jae-Hong
    • International Journal of Concrete Structures and Materials
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 2011
  • An extensive database has been constructed of reinforced concrete (RC) beam-column connection tests subjected to cyclic lateral loading. All cases within the database experienced joint shear failure, either in conjunction with or without yielding of longitudinal beam reinforcement. Using the experimental database, envelope curves of joint shear stress vs. joint shear strain behavior have been created by connecting key points such as cracking, yielding, and peak loading. Various prediction approaches for RC joint shear behavior are discussed using the constructed experimental database. RC joint shear strength and deformation models are first presented using the database in conjunction with a Bayesian parameter estimation method, and then a complete model applicable to the full range of RC joint shear behavior is suggested. An RC joint shear prediction model following a U.S. standard is next summarized and evaluated. Finally, a particular joint shear prediction model using basic joint shear resistance mechanisms is described and for the first time critically assessed.

Pull-In Voltage Modeling of Graphene Formed Nickel Nano Electro Mechanical Systems (NEMS)

  • Lim, Songnam;Lee, Jong-Ho;Choi, Woo Young;Cho, Il Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.647-652
    • /
    • 2015
  • Pull-in voltage model of nano-electro-mechanical system with graphene is investigated for the device optimization. In the pull in voltage model, thickness of graphene layer is assumed to be uniform in vertical and lateral direction. Finite element analysis simulation has verified the feasibility of the suggested model. From the suggested model, pull-in voltage change with graphene thickness and cantilever length can be estimated. Maximum induced stress and graphene thickness have a reciprocal relationship.

Analysis of Soil Nailed Wall Behaviour Based on Field Measurements (현장계측을 통한 소일네일링 벽체의 거동 분석)

  • 이철주;이도섭;김홍택;박재억;김충규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.119-126
    • /
    • 2004
  • Behaviour of soil nailed walls in Korea has been analysed based on a number of field measurements. The investigation has included interface shear strength development at the nail-soil interface from pull-out tests, lateral ground displacements, tensile force distributions along soil nails and mobilised interface shear stress distributions. Insights into the soil nailed wall behaviour based on the shear transfer mechanism at the soil-nail interface and partial mobilisations of the interface shear strength, governed by relative shear displacement, are reported and discussed. It is expected that results from the current research can provide relevant parameters required for preliminary design of soil nailed walls in Korea.

Effects of Geometry of Anti-Vortex Holes on Film-Cooling Effectiveness (반와류 홀의 형상 변화가 막냉각 효율에 미치는 영향)

  • Kim, Jun-Hee;Kim, Sun-Min;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.12-23
    • /
    • 2014
  • A parametric study on anti-vortex holes for turbine blade cooling was investigated numerically. Three-dimensional Reynolds-averaged Navier-Stokes equations and shear stress transport turbulence model were used for analysis of anti-vortex film cooling. Validation of numerical results was carried out comparing with experimental data. The cooling performance of anti-vortex holes was assessed by two geometric variables, the ratio of diameters of holes and the lateral distances between the primary hole and anti-vortex hole at blowing ratios of 0.5 and 1.0. The results showed that the spatially-averaged film-cooling effectiveness increases as the ratio of the diameters increases and the distance between the primary hole and anti-vortex hole decreases.