• 제목/요약/키워드: lateral soil movements

검색결과 34건 처리시간 0.023초

교대말뚝기초의 측방이동 판정기준 분석 (Design Guidelines of Piled Bridge Abutment subjected to Lateral Soil Movements)

  • 정상섬;이진형;서동희;김유석;장범수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.381-388
    • /
    • 2002
  • A series of centrifuge model tests were performed to investigate the behavior of piled bridge abutment subjected to lateral soil movements induced by the construction of approach embankment. In these tests, both the depth of soft clay and the rate of embankment construction are chosen as key parameters to examine the effects on lateral soil movements. The depth of soft clay layer varies from 5.2 m to 11.6 m, and the rate of embankment construction has two types of staged construction(1m/30days, 1m/15days) and instant construction. It is shown that, the distribution of lateral flow induced by stage embankment construction has a trapezoidal distribution. And practical guidelines to check the possibility of some lateral movement of piled abutment were investigated. The validity of the proposed guidelines by centrifuge test was compared with the observed performance by lateral movement index, F(Japan Highway Public Corporation) and modified I index(Korea Highway Corporation). Based on the results obtained, the critical values of F and modified I, as a practical guidelines, are proposed to 0.03 and 2.0, respectively.

  • PDF

교대말뚝기초의 측방유동에 관한 원심모형실험 (Centrifuge Model Experiments for Lateral Soil Movements of Piled Bridge Abutments.)

  • 최동혁;정길수;박병수;유남재
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.63-71
    • /
    • 2005
  • This paper is an experimental result of investigating lateral soil movements at piled bridge abutments by using the centrifuge model facility. Three different centrifuge model experiments, changing the methods of ground improvement at bridge abutment on the soft clayey soil (no improvement, preconsolidation and plastic board drains (PBD), sand compaction pile (SCP) + PBD), were carried out to figure out which method is the most appropriate for resisting against the lateral soil movements. In the centrifuge modelling, construction process in field was reconstructed as close as possible. Displacements of abutment model, ground movement, vertical earth pressure, cone resistance after soil improvement and distribution of water content were monitored during and after centrifuge model tests. As results of centrifuge model experiments, preconsolidation method with PBD was found to be the most effective against the lateral soil movement by analyzing results about displacements of abutment model, ground movement and cone resistance. Increase of shear strength by preconsolidation method resulted in increasing the resistance against lateral soil movement effectively although SCP could mobilize the resistance against lateral soil movement. It was also found that installment with PBD beneath the backfill of bridge abutment induced effective drainage of excess pore water pressure during the consolidation by embanking at the back of the abutment and resulted in increasing the shear strength of clay soil foundation and eventually increasing the resistance of lateral soil movement against piles of bridge abutment.

  • PDF

Response of passively loaded pile groups - an experimental study

  • Al-abboodi, Ihsan;Sabbagh, Tahsin Toma;Al-salih, Osamah
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.333-343
    • /
    • 2020
  • Preventing or reducing the damage impact of lateral soil movements on piled foundations is highly dependent on understanding the behavior of passive piles. For this reason, a detailed experimental study is carried out, aimed to examine the influence of soil density, the depth of moving layer and pile spacing on the behavior of a 2×2 free-standing pile group subjected to a uniform profile of lateral soil movement. Results from 8 model tests comprise bending moment, shear force, soil reaction and deformations measured along the pile shaft using strain gauges and others probing tools were performed. It is found that soil density and the depth of moving layer have an opposite impact regarding the ultimate response of piles. A pile group embedded in dense sand requires less soil displacement to reach the ultimate soil reaction compared to those embedded in medium and loose sands. On the other hand, the larger the moving depth, the larger amount of lateral soil movement needs to develop the pile group its ultimate deformations. Furthermore, the group factor and the effect of pile spacing were highly related to the soil-structure interaction resulted from the transferring process of forces between pile rows with the existing of the rigid pile cap.

ASSESSMENT OF TUNNELLING-INDUCED BUILDING DAMAGE

  • Son, Moo-Rak
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 3차
    • /
    • pp.86-95
    • /
    • 2010
  • Ground movements during tunnelling have the potential for major impact on nearby buildings, utilities and streets. The impacts on buildings are assessed by linking the magnitude of ground loss at the source of ground loss around tunnel to the lateral and vertical displacements on the ground surface, and then to the lateral strain and angular distortion, and resulting damage in the building. To prevent or mitigate the impacts on nearby buildings, it is important to understand the whole mechanism from tunnelling to building damage. This paper discusses tunneling-induced ground movements and their impacts on nearby buildings, including the importance of the soil-structure interactions. In addition, a building damage criterion, which is based on the state of strain, is presented and discussed in detail and the overall damage assessment procedure is provided for the estimation of tunnelling-induced building damage considering the effect of soil-structure interaction.

  • PDF

측방유동을 받는 교대말뚝기초의 거동분석 (II) - 측방유동 판정기준 - (The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - Design Guidelines -)

  • 이진형;서정주;정상섬;장범수
    • 한국지반공학회논문집
    • /
    • 제19권1호
    • /
    • pp.21-29
    • /
    • 2003
  • 본 논문에서는 원심모형실험 결과와 국내.외 현장자료를 바탕으로 연약지반에 시공된 교대말뚝기초의 측방이동 발생 가능성을 판정할 수 있는 기준을 비교.검토하였다. 이를 위해 교대말뚝기초의 측방이동에 가장 중요한 영향을 미치는 변수로서 지반조건과 성토지반 시공속도를 선정하여 총 6 종류의 원심모형실험을 실시하였다. 본 실험에서는 점성토 지반의 과잉간극수압과 지표 침하량, 교대말뚝기초의 수평변위와 휨변형, 교대말뚝기초에 작용하는 측방유동압을 성토하중 재하단계와 성토 후 80% 이상 압밀이 진행된 단계에서 측정하였으며 그 결과를 토대로 교대말뚝기초의 측방이동 판정기준을 분석하였다. 또한 원심모형실험 결과와 더불어 국내.외 현장자료를 조사 및 수집하여 교대말뚝기초의 측방이동 판정기준으로 일본 도로공단에서 제시한 측방이동지수(F)와 한국도로공사에서 제시한 수정 I지수($M_I$)에 대하여 그 타당성을 검토하였다. 그 결과 교대말뚝기초의 측방이동 판정기준으로 측방이동지수(F)는 0.03, 수정 I지수($M_I$)는 2.00으로 한계값을 수정하는 것이 타당한 것으로 나타났다.

연약지반 위에 시공되는 교대의 측방유동에 대한 안정성 평가 (Evaluation of Stability about Lateral Soil Movement of Bridge Abutment Constructed on Soft Ground)

  • 유남재;김동건;전상현
    • 산업기술연구
    • /
    • 제30권B호
    • /
    • pp.25-32
    • /
    • 2010
  • In this paper stability about lateral soil movement of bridge abutment constructed on the soft ground, reinforced with the sand compaction pile (SCP) and the preconsolidaton methods, was evaluated by using the centrifuge testing facility which stress conditions in field could be reconstructed in the laboratory. The layouts of model such as ground condition, sand compaction piles and abutment was determined on the basis of similitude law with the reduced scale of 1/200. Construction sequences of installing SCP, preparing reclaimed ground, preconsolidating ground and building the piled bridge abutment were reconstructed during centrifuge modelling and measurements of movement were followed in each sequence. From analyzing the results of measuring movements of the model abutment and the ground, measured lateral movement of model abutment was found to be within the allowable value so that stability of abutment against lateral sliding was secured.

  • PDF

연약지반에서의 말뚝기초 교대의 측방유동 대책공법 적용에 관한 연구 (A study on the stability of pile bridge abutment on soft ground undergoing lateral flow)

  • 오일록;채영수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.753-760
    • /
    • 2003
  • An existing studies concern about movement of pile bridge abutments. However, lateral displacement cause the serious failure of bridge by embankment under soft soil lateral flow A intention is obtained by analyzing the relationship between the safety factor of evaluation for lateral movements. Precise investigation and analysis are performed, in which the lateral movement of bridge abutments has occurred, and construct design strut-slab between bridge abutments in order to restraint lateral flow. As a result of this study, it was found that when evaluation for lateral movements is allowed to use Tschebotarioff's method and lateral flow decision number (I) and revision lateral flow decision number (M$_{I}$) by Korea Highway Corporation. Most important thing is decision of pressure of lateral flow at this case. Tschebotarioff's isoscales triangle method have no trouble analysis of pressure of lateral flow. Strut-slab method are nearly not have constructed case in this field site study that applied method. The method are between abutments combined steel strut and reinforced concrete slab. This method are effective restraint lateral flow but have little difficulty if long span bridge between abutments.s.

  • PDF

캔틸레버 옹벽의 거동에 대한 수치해석적 연구 (Numerical Analysis on Behavior of Cantilever Retaining Walls)

  • 장인성;정충기;김명모
    • 한국지반공학회지:지반
    • /
    • 제12권4호
    • /
    • pp.75-86
    • /
    • 1996
  • 현재 옹벽해석에 사용되는 Rankine이나 Coulomb의 토압산정방법은 벽체 뒤의 토사가 파괴상태에 도달하였다는 가정조건에 근거하고 있으며, 이를 위해서는 충분한 횡방향 변위가 발생하여야 한다. 최근의 현장시험 등을 통한 많은 연구에서는 옹벽에 작용하는 수평주동토압이 Rankine이나 Coulomb의 토압보다 크게 나타나고 있음을 보여주고 있으며, 이는 발생 수평변위량과 밀접한 관계가 있는 것으로 판단된다. 본 연구에서는 Drucker Prayer의 지반구성모델을 이용한 유한요소해석을 통하여 캔틸레버식 옹벽의 벽체 지주와 가상배면에 작용하는 수평주동토압을 발생변위와 함께 분석하였으며, 아울러 경사진 뒤채움이 수평주동토압에 미치는 영향도 검토하였다. 그 결과 옹벽에 작용하는 수평주동 토압은 발생변위와 밀접한 관계가 있으며, Rankine과 Coulomb의 방법은 작용수평주동토압을 과소평가하고, 경사진 뒤채움의 수평주동토압증가효과도 과소평가함을 확인하였다. 그리고 본 해석결과를 토대로 수평주동토압을 간편하게 산출할 수 있는 새로운 방법을 제안하였다.

  • PDF

Significance of seabed interaction on fatigue assessment of steel catenary risers in the touchdown zone

  • Elosta, Hany;Huang, Shan;Incecik, Atilla
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.403-423
    • /
    • 2016
  • The challenges involved with fatigue damage assessment of steel catenary riser (SCR) in the touchdown zone (TDZ) are primarily due to the non-linear behaviour of the SCR-seabed interaction, considerable uncertainty in SCR-seabed interaction modelling and geotechnical parameters. The issue of fatigue damage induced by the cyclic movements of the SCR with the seabed has acquired prominence with the touch down point (TDP) interaction in the TDZ. Therefore, the SCR-seabed response is critical for reliable estimation of fatigue life in the TDZ. Various design approaches pertaining to the lateral pipe-soil resistance model are discussed. These techniques have been applied in the finite element model that can be used to analyse the lateral SCR-seabed interaction under hydrodynamic loading. This study investigates the sensitivity of fatigue performance to geotechnical parameters through a parametric study. In this study, global analyses are performed to assess the influence of vertical linear seabed springs, the lateral seabed model and the non-linear seabed model, including trench evolution into seabed, seabed normalised stiffness, re-penetration offset parameter and soil suction resistance ratio, on the fatigue life of SCRs in the TDZ.

계단식 지오그리드 보강토 옹벽의 계측 (Instrumentation of A Two-Level of Soil-Reinforced Segmental Retaining Wall)

  • 유충식;정혁상
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.697-704
    • /
    • 2002
  • This paper presents the results of instrumentation of a two-level of soil-reinforced segmental retaining wall. Instrumentation items include the lateral wall displacements and the geogrid strains at several locations. The instrumentation is still long carried in order to examine long-term behavior. The result indicate that the upper wall has a significant effect on the behavior of the lower wall doubling the wall moved. The wall also exhibits significant post-construction movements that had ceased several months after the wall completed. The implication of the findings from this study was discussed in great detail.

  • PDF