• 제목/요약/키워드: lateral soil movement

검색결과 86건 처리시간 0.03초

교대말뚝기초의 측방유동에 관한 원심모형실험 (Centrifuge Model Experiments for Lateral Soil Movements of Piled Bridge Abutments.)

  • 최동혁;정길수;박병수;유남재
    • 산업기술연구
    • /
    • 제25권B호
    • /
    • pp.63-71
    • /
    • 2005
  • This paper is an experimental result of investigating lateral soil movements at piled bridge abutments by using the centrifuge model facility. Three different centrifuge model experiments, changing the methods of ground improvement at bridge abutment on the soft clayey soil (no improvement, preconsolidation and plastic board drains (PBD), sand compaction pile (SCP) + PBD), were carried out to figure out which method is the most appropriate for resisting against the lateral soil movements. In the centrifuge modelling, construction process in field was reconstructed as close as possible. Displacements of abutment model, ground movement, vertical earth pressure, cone resistance after soil improvement and distribution of water content were monitored during and after centrifuge model tests. As results of centrifuge model experiments, preconsolidation method with PBD was found to be the most effective against the lateral soil movement by analyzing results about displacements of abutment model, ground movement and cone resistance. Increase of shear strength by preconsolidation method resulted in increasing the resistance against lateral soil movement effectively although SCP could mobilize the resistance against lateral soil movement. It was also found that installment with PBD beneath the backfill of bridge abutment induced effective drainage of excess pore water pressure during the consolidation by embanking at the back of the abutment and resulted in increasing the shear strength of clay soil foundation and eventually increasing the resistance of lateral soil movement against piles of bridge abutment.

  • PDF

측방유동지반속 지중매설관에 작용하는 토압식 산정 (Evaluation of Lateral Earth Pressure on Buried Pipes in Soft Ground Undergoing Lateral Movement)

  • 홍원표;한중근;배태수
    • 한국지반공학회논문집
    • /
    • 제18권5호
    • /
    • pp.55-65
    • /
    • 2002
  • 소성흐름을 발생시키는 측방유동 가능지반내에 설치된 매설관에 작용하는 토압에 대한 메카니즘을 규명하기 위해 파괴형상실험을 실시하고, 파괴형상실험을 토대로 지반변형속도를 고려하기 위해 Maxwell 점탄성 모델을 적용한 토압산정식을 제안하였다. 직접전단실험으로 구한 점성계수와 내부마찰각과 상재압을 고정하여 이론식으로 도출해낸 점성계수가 잘 일치하고 있음을 확인하였고 모형실험결과와 이론식에 의한 토압은 지반변형속도에 영향을 받으며 비교적 일치하며 지반변형이 없는 경우에도 정지토압을 받음을 알 수 있다. 또한, 지반의 지지력은 점성토에서는 관입전단파괴시의 값과 거의 일치하였다. 또한, 매설관 주변지반의 파괴모드는 매설관직경과 무관하게 지반변형속도에 영향을 받으며 작용토압은 균질한 지층의 경우 선형적으로 증가하고 조립질에 가까울수록 선형적 감소치를 보이므로 매설관주변지반의 매립재를 이용하여 매설관주변의 토압을 경감시킬 수 있음을 알 수 있다.

측방유동을 받는 교대말뚝기초에 대한 거동분석 (Behavior of Piled Abutment adjacent to Surcharge Loads)

  • 정상섬;서정주;장범수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.25-32
    • /
    • 2000
  • In order to analyze the behavior of piled abutment adjacent to surcharge loads a numerical study was conducted. In 2D plane stalin analysis, the distribution of lateral soil movement was investigated by varying the thickness of clay layer and the magnitude of surcharge loads. In 3D analysis, the magnitude and distribution of lateral pile-soil movement were studied for different cap rigidity. Based on limited parametric studies, a simple method is proposed to identify the lateral pressure of piled abutment adjacent to surcharge loads.

  • PDF

측방변형지반속 매설관 주변지반의 파괴모드 (Soil Failure Mode of a Buried Pipe Around in Soil Undergoing Lateral Movement)

  • 홍원표;한중근
    • 한국환경복원기술학회지
    • /
    • 제5권5호
    • /
    • pp.11-21
    • /
    • 2002
  • A series of model tests is performed to evaluate the relationship between soil and a buried pipe in soil undergoing lateral movement. As the result of the model tests, a wedge zone and plastic flow zones could be observed in front of the pipe. And also an arc failure of cylindrical cavity could be observed at both upper and lower zones. Failure shapes in both cohesionless and cohesive soils are nearly same, which was investigated failure angle of $45^{\circ}+{\phi}/2$. In the cohesionless soil, the higher relative density produces the larger arc of cylindrical cavity. On the basis of failure mode observed from model tests, the lateral earth pressure acting on a buried pipe in soil undergoing lateral movement could be applying the cylindrical cavity extension mode. The deformation behavior of soils was typically appeared in three divisions, which are elastic zones, plastic zones and pressure behavior zones.

연약지반 위에 시공되는 교대의 측방유동에 대한 안정성 평가 (Evaluation of Stability about Lateral Soil Movement of Bridge Abutment Constructed on Soft Ground)

  • 유남재;김동건;전상현
    • 산업기술연구
    • /
    • 제30권B호
    • /
    • pp.25-32
    • /
    • 2010
  • In this paper stability about lateral soil movement of bridge abutment constructed on the soft ground, reinforced with the sand compaction pile (SCP) and the preconsolidaton methods, was evaluated by using the centrifuge testing facility which stress conditions in field could be reconstructed in the laboratory. The layouts of model such as ground condition, sand compaction piles and abutment was determined on the basis of similitude law with the reduced scale of 1/200. Construction sequences of installing SCP, preparing reclaimed ground, preconsolidating ground and building the piled bridge abutment were reconstructed during centrifuge modelling and measurements of movement were followed in each sequence. From analyzing the results of measuring movements of the model abutment and the ground, measured lateral movement of model abutment was found to be within the allowable value so that stability of abutment against lateral sliding was secured.

  • PDF

교대말뚝기초의 측방이동 판정기준 분석 (Design Guidelines of Piled Bridge Abutment subjected to Lateral Soil Movements)

  • 정상섬;이진형;서동희;김유석;장범수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.381-388
    • /
    • 2002
  • A series of centrifuge model tests were performed to investigate the behavior of piled bridge abutment subjected to lateral soil movements induced by the construction of approach embankment. In these tests, both the depth of soft clay and the rate of embankment construction are chosen as key parameters to examine the effects on lateral soil movements. The depth of soft clay layer varies from 5.2 m to 11.6 m, and the rate of embankment construction has two types of staged construction(1m/30days, 1m/15days) and instant construction. It is shown that, the distribution of lateral flow induced by stage embankment construction has a trapezoidal distribution. And practical guidelines to check the possibility of some lateral movement of piled abutment were investigated. The validity of the proposed guidelines by centrifuge test was compared with the observed performance by lateral movement index, F(Japan Highway Public Corporation) and modified I index(Korea Highway Corporation). Based on the results obtained, the critical values of F and modified I, as a practical guidelines, are proposed to 0.03 and 2.0, respectively.

  • PDF

교대의 측방변위 발생에 대한 사례분석 (A Case Study on the Lateral Movement of Abutment Foundations)

  • 이종규;박찬호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.31-42
    • /
    • 1994
  • In this paper, a case study was presented to analyze the lateral movement of abutment founded on the soft soil with steel pile foundations and was to propose its remedial methods. The main reason for the displacement was due to the lack of the lateral bearing capacity of piles and even more seriously the lateral movement of the soil arising from the construction of as embankment behind the abutment. This project showed that the passive state as well as the active state of piles must be considered for the proper design of abutment foundations.

  • PDF

연약지반에서의 교대변위를 고려한 EPS공법의 적용사례 연구 (A Case Study on the Application of EPS Construction Method Considering Abutment Displacement in Soft Ground)

  • 강희준;오일록;채영수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.698-705
    • /
    • 2004
  • Application of structural load on soft ground can cause lateral movement as well as ground break due to pressing and shearing of ground. Especially, abutment supported by pile foundation can make pile deformed due to lateral movement of ground in order to have harmful effect on structure. According to the result of this study, it is required to consider disturbance of weak soil layer when using lateral movement countermeasure method by EPS construction method as a result of performing study on safety review and EPS construction method with respect to this based on site where lateral movement occurs due to backside soil filling load at bridge abutment installed on weak ground, and it is required to sufficiently consider soil reduction during design of EPS construction method due to lateral movement deformation of soft clay layer by losing ground horizontal resistance force due to plasticity of ground around pile as well as combination part damage with pile head and expansion foundation.

  • PDF

매립지반 지하공동구의 수평이동원인에 대한 수치해석적 분석 (Numerical Analysis of Utility Tunnel Movement under Reclamation Ground)

  • 윤우현;황철성
    • 한국안전학회지
    • /
    • 제28권5호
    • /
    • pp.35-40
    • /
    • 2013
  • Recently reclamation land is largely developed to utilize the land according to economic growth. The soil of landfill is soft, low shear strength, which makes it difficult to use the equipment. A large movement is occurred on the utility tunnel under construction. The inclined land with high water level and underground facilities are widely distributed and the excess pore water pressure may occur under construction similarly to this study. Some different conditions are made to design result, such as 4m of soil piling near the construction area, heavy rainfall during 2nd excavation that may cause flow liquefaction. To analyze the cause of transverse lateral movement, Three dimensional analysis are performed to four load cases, which is original design condition, flow liquefaction by heavy rainfall, unsymmetric lateral soil pressure, and both of them simultaneously. Ten steps of full construction stage, 1st excavation for utility tunnel, construction of utility tunnel, 1st refill, piling soil from 1m to 4 m, 2nd excavation for drainage culvert, liquefaction around the utility tunnel, construction of drainage culvert and 2nd refill, are take into account to investigate the cause of movement.

수평모래지반에서 측방변형을 받는 사각형 수동 열말뚝에 관한 실험적 연구 (A Study of Rectangular-shaped Passive Row Piles in Horizontal Sand-ground under Lateral Soil Movement by Model Test)

  • 배종순;권민재
    • 한국지반공학회논문집
    • /
    • 제24권4호
    • /
    • pp.23-36
    • /
    • 2008
  • 본 연구는 측방변형을 일으키는 수평모래지반에 매설된 사각형 수동열말뚝의 모형실험에 대한 것이다. 말뚝의 형상, 열말뚝의 위치, 말뚝의 간격과 지반변형에 따른 열말뚝의 특성을 고찰하고자 하였다. 실험결과는 다음과 같다. 수평응력의 분포양상은 말뚝의 형상과 위치에 따라 삼각형, 사다리꼴, 사각형의 형태로 다양하게 나타났다. 휨모멘트는 B-type의 경우 outer pile이 inner pile보다 크게 나타났으나, H-type의 경우는 inner pile이 outer pile 보다 크게 나타났다. 수평저항력비$(R_f)$는 말뚝의 형상에 관계없이 열말뚝의 수평간격이 증가함에 따라 증가하는 경향으로 나타났다. 수평저항력의 작용점위치(Y/L)는 지반변위와 수평간격에 따라 큰 변화를 보이지 않으며, H-type이 B-type보다 조금 크게 나타났다.