• Title/Summary/Keyword: lateral restraints

Search Result 22, Processing Time 0.018 seconds

Experimental study on laterally restrained steel columns with variable I cross sections

  • Cristutiu, Ionel-Mircea;Nunes, Daniel Luis;Dogariu, Adrian Ioan
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.225-238
    • /
    • 2012
  • Steel structural elements with web-tapered I cross section, are usually made of welded thin plates. Due to the nonrectangular shape of the element, thin web section may be obtained at the maximum cross section height. The buckling strength is directly influenced by lateral restraining, end support and initial imperfections. If no lateral restraints, or when they are not effective enough, the global behaviour of the members is characterized by the lateral torsional mode and interaction with sectional buckling modes may occur. Actual design codes do not provide a practical design approach for this kind of elements. The paper summarizes an experimental study performed by the authors on a relevant number of elements of this type. The purpose of the work was to evaluate the actual behaviour of the web tapered beam-columns when applying different types of lateral restraints and different web thickness.

Enhancement of the buckling strength of glass beams by means of lateral restraints

  • Belis, J.;Impe, R. Van;Lagae, G.;Vanlaere, W.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.5
    • /
    • pp.495-511
    • /
    • 2003
  • New material applications and transparency are desired by contemporary architects. Its superb transparency and high strength make glass a very suitable building material -in spite of its brittleness- even for primary load bearing structures. Currently we will focus on load bearing glass beams, subjected to different loading types. Since glass beams have a very slender, rectangular cross section, they are sensitive to lateral torsional buckling. Glass beams fail under a critical buckling load at stresses that lie far below the theoretical simple bending strength, due to the complex combination of torsion and out-of-plane bending, which characterises the instability phenomenon. The critical load can be increased considerably by preventing the upper rim from moving out of the beam's plane. Different boundary conditions are examined for different loading types. The load carrying capacity of glass beams can be increased three times and more using relatively simple, cheap lateral restraints.

Inelastic lateral-distortional buckling of continuously restrained continuous beams

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.305-326
    • /
    • 2005
  • The inelastic buckling behaviour of continuously restrained two and three-span continuous beams subjected to concentrated loads and uniformly distributed loads are studied in this paper. The restraint type considered in this paper is fully restrained against translation and elastic twist applied at the top flange. These types of restraints are most likely experienced in industrial structures, for example steel-concrete composite beams and half through girders. The buckling analysis of continuous beam consists of two parts, firstly the moment and shear distribution along the member are determined by employing force method and the information is then used for an out-of-plane buckling analysis. The finite element method is incorporated with so-called simplified and the polynomial pattern of residual stress. Owing to the inelastic response of the steel, both the in-plane and out-of-plane analysis, which is treated as being uncoupled, extend into the nonlinear range. This paper presents the results of inelastic lateral-torsional and lateral-distortional buckling load and finally conclusions are drawn regarding the web distortion.

Free vibration of AFG beams with elastic end restraints

  • Bambaeechee, Mohsen
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.403-432
    • /
    • 2019
  • Axially functionally graded (AFG) beams are a new class of composite structures that have continuous variations in material and/or geometrical parameters along the axial direction. In this study, the exact analytical solutions for the free vibration of AFG and uniform beams with general elastic supports are obtained by using Euler-Bernoulli beam theory. The elastic supports are modeled with linear rotational and lateral translational springs. Moreover, the material and/or geometrical properties of the AFG beams are assumed to vary continuously and together along the length of the beam according to the power-law forms. Accordingly, the accuracy, efficiency and capability of the proposed formulations are demonstrated by comparing the responses of the numerical examples with the available solutions. In the following, the effects of the elastic end restraints and AFG parameters, namely, gradient index and gradient coefficient, on the values of the first three natural frequencies of the AFG and uniform beams are investigated comprehensively. The analytical solutions are presented in tabular and graphical forms and can be used as the benchmark solutions. Furthermore, the results presented herein can be utilized for design of inhomogeneous beams with various supporting conditions.

Stability of structural steel tubular props: An experimental, analytical, and theoretical investigation

  • Zaid A. Al-Sadoon;Samer Barakat;Farid Abed;Aroob Al Ateyat
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.143-159
    • /
    • 2023
  • Recently, the design of scaffolding systems has garnered considerable attention due to the increasing number of scaffold collapses. These incidents arise from the underestimation of imposed loads and the site-specific conditions that restrict the application of lateral restraints in scaffold assemblies. The present study is committed to augmenting the buckling resistance of vertical support members, obviating the need for supplementary lateral restraints. To achieve this objective, experimental and computational analyses were performed to assess the axial load buckling capacity of steel props, composed of two hollow steel pipes that slide into each other for a certain length. Three full-scale steel props with various geometric properties were tested to construct and validate the analytical models. The total unsupported length of the steel props is 6 m, while three pins were installed to tighten the outer and inner pipes in the distance they overlapped. Finite Element (FE) modeling is carried out for the three steel props, and the developed models were verified using the experimental results. Also, theoretical analysis is utilized to verify the FE analysis. Using the FE-verified models, a parametric study is conducted to evaluate the effect of different inserted pipe lengths on the steel props' axial load capacity and lateral displacement. Based on the results, the typical failure mode for the studied steel props is global elastic buckling. Also, the prop's elastic buckling strength is sensitive to the inserted length of the smaller pipe. A threshold of minimum inserted length is one-third of the total length, after which the buckling strength increases. The present study offers a prop with enhanced buckling resistance and introduces an equation for calculating an equivalent effective length factor (k), which can be seamlessly incorporated into Euler's buckling equation, thereby facilitating the determination of the buckling capacity of the enhanced props and providing a pragmatic engineering solution.

Numerical study on the moment capacity of zed-section purlins under uplift loading

  • Zhu, Jue;Chen, Jian-Kang;Ren, Chong
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.147-161
    • /
    • 2014
  • In this paper a nonlinear finite element analysis model is established for cold-formed steel zed-section purlins subjected to uplift loading. In the model, the lateral and rotational restraints provided by the sheeting to the purlin are simplified as a lateral rigid restraint imposed at the upper flange-web junction and a rotational spring restraint applied at the mid of the upper flange where the sheeting is fixed. The analyses are performed by considering both geometrical and material nonlinearities. The influences of the rotational spring stiffness and initial geometrical imperfections on the uplift loading capacity of the purlin are investigated numerically. It is found that the rotational spring stiffness has significant influence on the purlin performance. However, the influence of the initial geometric imperfections on the purlin performance is found only in purlins of medium or long length with no or low rotational spring stiffness.

Distortional buckling of I-steel concrete composite beams in negative moment area

  • Zhou, Wangbao;Li, Shujin;Huang, Zhi;Jiang, Lizhong
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.57-70
    • /
    • 2016
  • The predominant type of buckling that I-steel concrete composite beams experience in the negative moment area is distortional buckling. The key factors that affect distortional buckling are the torsional and lateral restraints by the bottom flange. This study thoroughly investigates the equivalent lateral and torsional restraint stiffnesses of the bottom flange of an I-steel concrete composite beam under negative moments. The results show a coupling effect between the applied forces and the lateral and torsional restraint stiffnesses of the bottom flange. A formula is proposed to calculate the critical buckling stress of the I-steel concrete composite beams under negative moments by considering the lateral and torsional restraint stiffnesses of the bottom flange. The proposed method is shown to better predict the critical bending moment of the I-steel composite beams. This article introduces an improved method to calculate the elastic foundation beams, which takes into account the lateral and torsional restraint stiffnesses of the bottom flange and considers the coupling effect between them. The results show a close match in results from the calculation method proposed in this paper and the ANSYS finite element method, which validates the proposed calculation method. The proposed calculation method provides a theoretical basis for further research on distortional buckling and the ultimate resistance of I-steel concrete composite beams under a variable axial force.

Inelastic lateral-distortional buckling of continuously restrained rolled I-beams

  • Lee, Dong-Sik;Bradford, Mark A.
    • Steel and Composite Structures
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2002
  • An energy method of analysis is presented which can be used to study the inelastic lateral-distortional buckling of hot-rolled I-sections continuously restrained at the level of the tension flange. The numerical modelling leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtainable, so as to enable a study of the factors that influence the strength of continuously restained I-beams to be made. Although hot-rolled I-sections generally have stocky webs and are not susceptible to reductions in their overall buckling loads as a result of cross-sectional distortion, the effect of elastic restraints, particularly against twist rotation, can lead to buckling modes in which the effect of distortion is quite severe. While the phenomenon has been studied previously for elastic lateral-distortional buckling, it is extended in this paper to include the constitutive relationship characteristics of mild steel, and incorporates both the so-called 'polynomial' and 'simplified' models of residual stresses. The method is validated against inelastic lateral-torsional buckling solutions reported in previous studies, and is applied to illustrate some inelastic buckling problems. It is noted that over a certain range of member slenderness the provisions of the Australian AS4100 steel standard are unconservative.

A Review of the Expansion Behavior of Marine Pipelines

  • Choi, Han-Suk;Lee, Seung-Keon;Chun, Eun-Jee
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.13-19
    • /
    • 2008
  • A camprehensive review of the expansion behavior of marine pipelines due to thermal and pressure change is presented based on research work over the last 10 years. The review is organized into five main sections, namely free expansion with uniform temperature, free expansion with temperature gradient, expansion with end restraints, expansion of pipe-in-pipe system, and lateral deviation (snaking). Based on the accumulated knowledge of the interactions between the soil and pipeline behavior, a whole pipeline system can be modeled by an accurate finite element method (FEM). This methodology requires a comprehensive understanding and engineering verification of the expansion behavior of marine pipelines.

Behavior and Ultimate Strength of Restrained Reinforced Concrete Columns (구속 철근콘크리트 기둥의 극한강도와 거동해석)

  • Park, Jae Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.23-31
    • /
    • 1992
  • In this study, Behavior of Eccentrically Loaded Restrained Concrete Slender Columns are investigated the continuation. The paper is : nonlinear constitutive relations of reinforced concrete columns are formulated, the multivariable nonlinear equation formulated in this study is solved by the incremental iterative method, the solution scheme is suitable for computer application, the proposed method bas been compared with the numerical examples and other research results and is shown to be in good agreement Accordingly, the objectives of this investigation are to use the method developed to conduct a parametric study of the different variable (Rotational Restraints,Ratio of End Restraints. End Eccentricity, Ratio of End Eccentricities,Lateral Restraint, Concrete Strength, Ratio of Reinforcement. Yield Point of Reinforcement) influencing the behavior and the ultimate strength for columns. Chosen values for different parameters and their variations are based on values encountered in practice and on results of other analylitical studies.

  • PDF