• 제목/요약/키워드: lateral friction

검색결과 215건 처리시간 0.027초

경골목조주택의 벽체-바닥체 못결합부의 감쇠비에 관한 연구 (Studies on Damping Ratio of Nailed Joint Connecting Wall to Floor in Light Frame House)

  • 김광모;이전제
    • Journal of the Korean Wood Science and Technology
    • /
    • 제24권3호
    • /
    • pp.65-71
    • /
    • 1996
  • In the design of wood structures, the consideration of the dynamic load effect has been increased. Generally, damping ratio is presented as the method of considering dynamic load effect. So, the relationship between joint type and damping ratio was investigated. It has been known that the joint extremely damp the dynamic load in wood structures. Static test was performed to determine the effects of nail size and friction area on joint strength and stiffness. Joint strength and stiffness were increased with nail size. However, the static properties of joint was not affected by friction area. Cyclic test was performed to determine the effects of nail size, friction area and load magnitude on damping ratio, Damping ratio was affected by all factors. Increasing the width of the bottom plate was suggested as the most adequate method to increase the damping ratio without the reduction of the static properties of the structures.

  • PDF

OTS SAM의 미소 응착 특성에 관한 실험적 연구 (An Experimental Study on the Nano-adhesion of Octadecyltrichlorosilane SAM on the Si Surface)

  • 윤의성;박지현;양승호;한흥구;공호성
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.276-282
    • /
    • 2001
  • Nano adhesion between SPM (scanning probe microscope) tips and 075 (octadecyltrichlorosilane) SAM (self-assembled monolayer) was experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM(atomic force microscope) and LFM(lateral force microscope) modes in various conditions of relative humidity. OTS SAM was formed on Si-wafer (100) surfaces, and Si$_3$N$_4$ tips of different radius of curvature were used. When the surface was hydrophobic, the adhesion and friction forces were found lower than those of bare Si-wafer. Results also showed that micro-adhesion force increased as the relative humidity and the tip radius of curvature increased. The main parameter for affecting the micro-adhesion was found absorbed humidity on the contact surface. These results were discussed with the JKR model and a capillary force caused by absorbed water.

Parameters study on lateral buckling of submarine PIP pipelines

  • Zhang, Xinhu;Duan, Menglan;Wang, Yingying;Li, Tongtong
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.99-115
    • /
    • 2016
  • In meeting the technical needs for deepwater conditions and overcoming the shortfalls of single-layer pipes for deepwater applications, pipe-in-pipe (PIP) systems have been developed. While, for PIP pipelines directly laid on the seabed or with partial embedment, one of the primary service risks is lateral buckling. The critical axial force is a key factor governing the global lateral buckling response that has been paid much more attention. It is influenced by global imperfections, submerged weight, stiffness, pipe-soil interaction characteristics, et al. In this study, Finite Element Models for imperfect PIP systems are established on the basis of 3D beam element and tube-to-tube element in Abaqus. A parameter study was conducted to investigate the effects of these parameters on the critical axial force and post-buckling forms. These parameters include structural parameters such as imperfections, clearance, and bulkhead spacing, pipe/soil interaction parameter, for instance, axial and lateral friction properties between pipeline and seabed, and load parameter submerged weight. Python as a programming language is been used to realize parametric modeling in Abaqus. Some conclusions are obtained which can provide a guide for the design of PIP pipelines.

타이어 횡력 제한 조건 하에서 ESC와 AFS를 이용한 통합 섀시 제어 (Unified Chassis Control with ESC and AFS under Lateral Tire Force Constraint on AFS)

  • 임성진;남기홍;이호석
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.595-601
    • /
    • 2015
  • This paper presents an unified chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. When generating the control yaw moment, an optimization problem is formulated in order to determine the tire forces, generated by ESC and AFS. With Karush-Kuhn-Tucker optimality condition, the optimum tire forces can be algebraically calculated. On low friction road, the lateral force in front wheels is easily saturation. When saturated, AFS cannot generate the required control yaw moment. To cope with this problem, new constraint on the lateral tire force is added into the original optimization problem. To check the effectiveness of the propose method, simulation is performed on the vehicle simulation package, CarSim.

Diagnosis of Iliotibial Band Friction Syndrome and Ultrasound Guided Steroid Injection

  • Hong, Ji Hee;Kim, Ji Sub
    • The Korean Journal of Pain
    • /
    • 제26권4호
    • /
    • pp.387-391
    • /
    • 2013
  • A 64-year-old woman visited our pain clinic with the pain of right lateral side of thigh for one year. Her pain always started from knee and was radiated to buttock area when symptom was severe. She showed significant tenderness at knee lateral side and local tightness at lateral thigh. Magnetic resonance image of the knee was performed and we could identify high signal intensity of iliotibial band through coronal and axial view. In spite of medication and physical stretching exercise of iliotibial band for one month, she did not show any improvement of pain. To alleviate her symptom, ultrasound guided local corticosteroid injection targeting beneath the iliotibial band was performed. After the procedure, the reduction of pain was significant and there was no need for further management.

장대레일궤도의 온도좌굴에 영향을 미치는 매개변수 연구 (Parametric Study on Thermal Buckling of CWR Tracks)

  • 최동호;김호배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.295-302
    • /
    • 2001
  • The lateral stability of curved continuous welded rail (CWR) is studied fur buckling prevention. This study includes the influences of vehicle induced loads on the thermal buckling behavior of straight and curved CWR tracks. quasi-static loads model is assumed to determine the uplift region, which occurs due to the vertical track deformation induced by wheel loads of vehicle. Parametric numerical analyses are performed to calculate the upper and lower critical buckling temperatures of CWR tracks. The parameters include track lateral resistance, track curvature, longitudinal stiffness, tie-ballast friction coefficient, axle load, truck center spacing, and the ratio of lateral to vertical vehicle load. This study provides a guideline for the improvement or stability for dynamic buckling in on tracks.

  • PDF

Modelling and Measurements of Normal and Lateral Stiffness for Atomic Force Microscopy

  • Choi, Jinnil
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.240-247
    • /
    • 2014
  • Modelling and measurements of normal and lateral stiffness for atomic force microscopy (AFM) are presented in this work. Important issues, such as element discretisation, stiffness calibration, and deflection angle are explored using the finite element (FE) model. Elements with various dimension ratios are investigated and comparisons with several mathematical models are reported to verify the accuracy of the model. Investigation of the deflection angle of a cantilever is also shown. Moreover, AFM force measurement experiments with conical and colloid probe tips are demonstrated. The relationships between force and displacement, required for stiffness measurement, in normal and lateral directions are acquired for the conical tip and the limitations of the colloid probe tip are highlighted.

Parametric Study of Thermal Stability on Continuous Welded Rail

  • Choi, Dong-Ho;Na, Ho-Sung
    • International Journal of Railway
    • /
    • 제3권4호
    • /
    • pp.126-133
    • /
    • 2010
  • The thermal buckling analysis of curved continuous welded rail (CWR) is studied for the lateral buckling prevention. This study includes a thermal buckling theory which accounts for both thermal and vehicle loading effects in the evaluation of track stability. The parameters include rail size, track lateral resistance, track longitudinal and torsional stiffnesses, initial misalignment amplitude and wavelength, track curvature, tie-ballast friction coefficient and truck center spacing. Parametric studies are performed to evaluate the effects of the individual parameters on the upper and lower critical buckling temperatures. The results show that the upper critical buckling temperature is highly affected by the uplift due to vehicle loads. This study provides a guideline for the improvement of stability for dynamic buckling in curved CWR track.

  • PDF

소조기 홍수시 한강하구 석모수로에서의 횡 방향 2차 흐름 및 운동량 분석 (Study on Lateral Flow Distribution and Momentum Analysis at Flood season and Neap tide of the Seokmo Channel in the Han River estuary)

  • 최낙용;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제24권6호
    • /
    • pp.390-399
    • /
    • 2012
  • 본 연구에서는 지속적인 담수유입이 존재하고 S자의 수로형태를 가진 경기만 석모수로에서 소조기 홍수시 13시간 동안 7개의 정선에서 단면유속 및 염분을 관측하였다. 각 단면의 최강 창조와 낙조시의 유속 크기와 방향을 파악하였고, 단면 내의 유속 분포 및 염분구조를 분석하였다. 또한 정선 별로 나타나는 횡 방향 흐름이 어떠한 운동량에 의해 지배되는지 파악하고자 횡 방향의 운동량 분석을 수행하였다. 운동량 분석에서는 석모수로의 S자 형태의 영향을 고려하기 위해서 원심력을 고려하였다. 분석 결과 소조기 홍수시 석모수로는 횡 방향 압력 경도력과 수직적 마찰력이 가장 우세하기 때문에 염분 분포와 성층에 의한 흐름이 주로 나타났다. 수로의 특성은 크게 북단과 남단으로 나누어 볼 수 있는데 상대적으로 조간대가 넓게 형성되고 담수의 영향이 큰 석모수로 북단의 4개 정선중에서 수심이 깊은 정선에서는 횡 방향 압력 경도력이 우세하지만 수직적으로 크기가 다르며, 수심이 낮은 정선에서는 수직 마찰항이 우세하였다. 이와는 달리 수심이 깊고 수로의 굴곡이 심한 석모수로 남단에서는 낙조시 지형학적 원인과 담수의 영향에 따라 이류 가속항과 원심력이 강해지게 된다. 이와 같은 결과를 종합할 때, 석모수로는 위치와 수심, 수로의 굴곡 등에 따라 운동량 분포가 각기 달리 나타나며 이러한 영향으로 인해 횡 방향 흐름 특성이 발생했음을 알 수 있다.

도심지 인접 굴착 시 굴착벽에 작용하는 횡방향 토압에 대한 연구 (Active Earth Pressure Acting on Excavation Wall Located Near Existing Wall Face)

  • 이진선
    • 한국지반환경공학회 논문집
    • /
    • 제13권12호
    • /
    • pp.67-74
    • /
    • 2012
  • 기존건물의 지하층과 인접하여 굴착 시 양단벽체 토사의 마찰로 발생하는 아칭효과는 굴착벽체에 작용하는 토압을 경감시키게 된다. 본 논문에서는 굴착깊이에 대한 배면폭의 비와 벽마찰각의 변화에 따른 아칭효과의 변화를 다양한 조건에서 수치해석을 통하여 살펴보았다. 수치해석 모델은 원심모형시험결과를 바탕으로 검증하여 적용하였으며, 아칭에 의한 토압경감 효과는 굴착깊이에 대한 배면폭의 비가 작고 벽마찰각이 커짐에 따라 증가함을 알 수 있었다. 이와 같은 아칭 현상은 기존의 아칭이론 중 Handy(1985)가 제안한 이론식을 통하여 가장 정확히 묘사 가능함을 알 수 있었다.