• Title/Summary/Keyword: lateral forces

Search Result 576, Processing Time 0.022 seconds

Structural Performance Assessment of Buildings Considering Beam Discontinuity and Horizontal Irregularity under Wind and Earthquake Loads (보부재 불연속성과 수평비정형성을 고려한 건물의 풍하중과 지진하중에 의한 응답해석)

  • Chakraborty, Sudipta;Islam, Md. Rajibul;Kim, Dookie
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.10-19
    • /
    • 2022
  • Irregularity in structural shape is a ubiquitous phenomenon. Structural hazards evoked from irregularity need to be checked against extreme lateral loadings. Structures containing four distinct types of irregularities in terms of continuity and discontinuity in upper half-length and all story levels along with O-shape are investigated. The structures were analyzed numerically and different seismic responses such as displacements, bending moment, axial forces, torsions, story drift, etc. were scrutinized. The seismic and wind load analysis was conducted for ACI 318-11 conditions. Results show that buildings having discontinuous beams on the upper half exhibit better resilience. It is also concluded that O-shaped building structures provide better resistance to overturning, making this shape relatively safe.

Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles

  • Soomro, Mukhtiar Ali;Mangi, Naeem;Memon, Aftab Hameed;Mangnejo, Dildar Ali
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.25-40
    • /
    • 2022
  • In this study, 3D coupled-consolidation numerical parametric study was conducted to predict the deformation mechanism of a 20 storey building sitting on (4×4) piled raft (with length of piles, Lp=30 m) to adjacent 6 m diameter (D) tunnelling in stiff clay. The influences of different tunnel locations relative to piles (i.e., zt/Lp) were investigated in this parametric study. In first case, the tunnel was excavated near the pile shafts with depth of tunnel axis (zt) of 9 m (i.e., zt/Lp). In second and third cases, tunnels were driven at zt of 30 m and 42 m (i.e., zt/Lp = 1.0 and 1.4), respectively. An advanced hypoplastic clay model (which is capable of taking small-strain stiffness in account) was adopted to capture soil behaviour. The computed results revealed that tunnelling activity adjacent to a building resting on piled raft caused significant settlement, differential settlement, lateral deflection, angular distortion in the building. In addition, substantial bending moment, shear forces and changes in axial load distribution along pile length were induced. The findings from the parametric study revealed that the building and pile responses significantly influenced by tunnel location relative to pile.

A Study on the Estimation of Mooring Force of the T/S HANBADA (실습선 한바다호의 계류력 추정연구)

  • Seo, Dae-Won;Oh, Jungkeun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.819-826
    • /
    • 2022
  • Recently, interest in smart port systems for linking with autonomous ships is increasing. To build a smart port system, primarily, a system that can automatically moor a vessel is required. To calculate the allowable mooring capacity of the automatic mooring system in a port, the characteristics of the vessel must be considered, and the external force generated from environmental disturbances in the sea must be accurately calculated. Accurately estimating the magnitude of these environmental disturbances is an extremely important factor for designing an automatic mooring system. In this study, the mooring capacity of the HANBADA was estimated according to the port and fishing port design criteria of the Ministry of Ocean and Fisheries. The longitudinal and lateral forces of the mooring force acting on the HANBADA were 18 kN and 248 kN, respectively, under the most extreme ocean conditions (BF 6).

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Optimum position for outriggers of different materials in a high- rise building

  • Nikhil Y. Mithbhakare;Popat D. Kumbhar
    • Earthquakes and Structures
    • /
    • v.25 no.5
    • /
    • pp.359-367
    • /
    • 2023
  • High-rise structures are considered as symbols of economic power and leadership. Developing countries like India are also emerging as centers for new high-rise buildings (HRB). As the land is expensive and scarce everywhere, construction of tall buildings becomes the best solution to resolve the problem. But, as building's height increases, its stiffness reduces making it more susceptible to vibrations due to wind and earthquake forces. Several systems are available to control vibrations or deflections; however, outrigger systems are considered to be the most effective systems in improving lateral stiffness and overall stability of HRB. In this paper, a 42-storey RCC HRB is analyzed to determine the optimum position of outriggers of different materials. The linear static analysis of the building is performed with and without the provision of virtual outriggers of reinforced cement concrete (RCC) and pre-stressed concrete (PSC) at different storey levels by response spectrum method using finite element based Extended3D Analysis of building System (ETABS) software for determining responses viz. storey displacement, base shear and storey drift for individual models. The maximum allowable limit and percentage variations in earthquake responses are verified using the guidelines of Indian seismic codes. Results indicate that the outriggers contribute in significantly reducing the storey displacement and storey drift up to 28% and 20% respectively. Also, it is observed that the PSC outriggers are found to be more efficient over RCC outriggers. The optimum location of both types of outriggers is found to be at the mid height of building.

Whole-working history analysis of seismic performance state of rocking wall moment frame structures based on plastic hinge evolution

  • Xing Su;Shi Yan;Tao Wang;Yuefeng Gao
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.175-189
    • /
    • 2024
  • Aiming at studying the plastic hinge (PH) evolution regularities and failure mode of rocking wall moment frame (RWMF) structure in earthquakes, the whole-working history analysis of seismic performance state of RWMF structure based on co-operation performance and PH evolution was carried out. Building upon the theoretical analysis of the elastic internal forces and deformations of RWMF structures, nonlinear finite element analysis (FEA) methods were employed to perform both Pushover analysis and seismic response time history analysis under different seismic coefficients (δ). The relationships among PH occurrence ratios (Rph), inter-story drifts and δ were established. Based on the plotted curve of the seismic performance states, evaluation limits for the Rph and inter-story drifts were provided for different performance states of RWMF structures. The results indicate that the Rph of RWMF structures exhibits a nonlinear evolution trend of "fast at first, then slow" with the increasing of δ. The general pattern is characterized by the initial development of beam hinges in the middle stories, followed by the development towards the top and bottom stories until the beam hinges are fully formed. Subsequently, the development of column hinges shifts from the bottom and top stories towards the middle stories of the structure, ultimately leading to the loss of seismic lateral capacity with a failure mode of partial beam yield, demonstrating a global yielding pattern. Moreover, the limits for the Rph and inter-story drifts effectively evaluate the five different performance states of RWMF structures.

Prosthetic rehabilitation of partially edentulous patient after hemimandiblectomy: Case report (하악골 부분절제술 시행한 부분 무치악 환자에서 보철 수복 증례)

  • Lee, Dong-Hun;Yoo, Dong-Soo;Lee, Jong-Hyuk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.1
    • /
    • pp.39-45
    • /
    • 2015
  • Loss of continuity of the mandible destroys the balance and symmetry of mandibular function, leading to altered mandibular movements and deviation of the residual fragment towards the resected side. Apart from deviation, other dysfunctions include difficulty in swallowing, speech, mandibular movements, mastication, and respiration are accompanied. In general, surgical reconstruction is considered first then proceeds to the prosthetic restorations. However, patients with systemic disease such as BRONJ (Bisphosphonate related osteonecrosis of the Jaw), surgical reconstruction may be limited. Thus, the prosthetic restoration remains as the only resort. Numerous prosthetic methods are employed to minimize deviation and to improve masticatory efficiency, function and esthetics. If a removable partial denture is the selected treatment modality, maximum stability of the partial denture base may be accomplished with a functional impression procedure by means of eliminating lateral and horizontal forces caused by the functional movements of the lips, cheeks and tongue. Also, Twin occlusion is used to obtain a favorable occlusal relationship and check support for esthetics. The purpose of this case report is to demonstrate how neutral zone impression technique and twin occlusion scheme were applied to restore a hemi-mandiblectomy patient with BRONJ syndrome to achieve satisfactory results in functional and esthetic aspects.

Biomechanical Analysisz of Varying Backpack Loads on the Lower Limb Moving during Downhill Walking (내림 경사로 보행시 배낭 무게에 따른 하지 움직임의 운동역학적 분석)

  • Chae, Woen-Sik;Lee, Haeng-Seob;Jung, Jae-Hu;Kim, Dong-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.191-198
    • /
    • 2015
  • Objective : The purpose of this study was to conduct biomechanical analysis of varying backpack loads on the lower limb movements during downhill walking over $-20^{\circ}$ ramp. Method : Thirteen male university students (age: $23.5{\pm}2.1yrs$, height: $175.7{\pm}4.6cm$, weight: $651.9{\pm}55.5N$) who have no musculoskeletal disorder were recruited as the subjects. Each subject walked over $20^{\circ}$ ramp with four different backpack weights (0%, 10%, 20% and 30% of body weight) in random order at a speed of $1.0{\pm}0.1m/s$. Five digital camcorders and two force plates were used to obtain 3-d data and kinetics of the lower extremity. For each trial being analyzed, five critical instants were identified from the video recordings. Ground reaction force, loading rate, decay rate, and resultant joint moment of the ankle and the knee were determined by the inverse dynamics analysis. For each dependent variable, one-way ANOVA with repeated measures was used to determine whether there were significant differences among four different backpack weight conditions (p<.05). When a significant difference was found, post hoc analyses were performed using the contrast procedure. Results : The results of this study showed that the medio-lateral GRFs at RHC in 20% and 30% body weight were significantly greater than the corresponding value in 0% of body weight. A consistent increase in the vertical GRFs as backpack loads increased was observed. The valgus joint movement of the knee at RTO in 30% body weight was significantly greater than the corresponding values in 0% and 10% body weight. The increased valgus moment of 30% body weight observed in this phase was associated with decelerating and stabilizing effects on the knee joint. The results also showed that the extension and valgus joint moments of the knee were systematically affected by the backpack load during downhill walking. Conclusion : Since downhill walking while carrying heavy external loads in a backpack may lead to excessive knee joint moment, damage can occur to the joint structures such as joint capsule and ligaments. Therefore, excessive repetitions of downhill walking should be avoided if the lower extremity is subjected to abnormally high levels of load over an extended period of time.

A STUDY ON THE FACIAL ESTHETIC PREFERENCES AMONG KOREAN YOUTHS: ASSESSMENT OF PROFILE PREFERENCES (한국 젊은이의 안면미 선호경향에 관한 연구 : 얼굴의 측모평가를 중심으로)

  • Song, Sejin;Choi, Ik-chan
    • The korean journal of orthodontics
    • /
    • v.22 no.4 s.39
    • /
    • pp.881-920
    • /
    • 1992
  • This study was designed to assess profile preferences among Korean youths in the year 1992. Facial esthetics was evaluated by means of silhouette profiles, eliminating the influence of a number of aspects that may affect judgment when normal lateral photographs are used. The main points of preference to be clarified here are as follows. First, on facial convexity, Second, on nasion depth, Third, on mentolabial sulcus depth, Fourth, on the position of upper and lower lips, Fifth, on facial type according to Angle's classification of malocclusion, Sixth, on Song's tangents. The 54 subjects printed in questionnaire as black and white silhouettes were selected from 300 tracings from cephalometric radiographs of people whose age ranging from 11 to 20 years. Photographs of six female subjects were retouched by computer graphic software and printed in color and black/white photographs which were used for adaptation of eyes of participants in selecting profiles in silhouette. They constitute 2 questions. The 54 subjects were grouped as 22 questions, each of them composed of 6 subjects, according to the aspects to be clarified. Twenty four questions in total were asked to assess profile preferences. For the assessment, the profile line, the facial esthetic triangle, Song's tangents, and Angle's classification of malocclusion were introduced. The profile line is composed of 11 component points which are Trichion, Glabella, Nasion, Pronasale, Subnasale, Labrale superius, Stomion, Labrale inferius, Supramentale, Pogonion, and Gnathion. The facial esthetic triangle is composed of 3 tangents: A-tangent which is the tangent of dorsum of nose, B-tangent which is the line passing through Sn and Ls, and C-tangent which is drawn on the turning point of the curve which lies between mentolabial sulcus (Sm) and pogonion (Pg). Angle's classification has 3 types of malocclusion which are Class I, Class II, and Class III. Class II malocclusion is subdivided into Division 1 and Division 2. The participants of the survey were composed of 861 college students (448 male students, 413 female students) whose majors grouped as Fine Arts. Liberal Arts, and Natural Sciences, and whose mean age 21.8 years. The statistics program SPSS/PC + of SPSS Inc. was used to analyze answers of participants. Crosstabulation, Chi-square test, and Kendall test were done. The conclusions are as follows: First, Korean youths have a tendency to prefer the slightly convex face to the flat or concave face. Second, they prefer a moderately deep nasion. Third, they prefer a moderately deep mentolabial sulcus. Fourth, they prefer the position of lips which are near to Ricketts' E-line. The position of the upper lip which is slightly posterior to E-line is preferred. The upper lip which lies too far anterior or posterior to the lower lip is not perferred. Fifth, they prefer most, according to Angle's Classification of Malocclusion, Class I facial profile which has a slight inclination to Class II division 2. The order of preference is Class I, Class II division 2, Class III, and Class II division 1. Sixth, they prefer the type 2 and 3 of Song's tangents. The facial profile within which A-and B-tangent meet is preferred. The facial profile which has Cotangent that .meets with A-tangent slightly posterior to the crossing point of A-and B-tangent or that parallels with B-tangent is preferred.

  • PDF

Development of Efficient Analytical Model for a Diagrid Mega-Frame Super Tall Building (다이어그리드 메가프레임 초고층 건물을 위한 효율적인 해석모델의 개발)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.3
    • /
    • pp.95-103
    • /
    • 2011
  • Among structural systems for complex-shaped tall buildings, diagrid system is widely used because of its structural efficiency and beauty of form. Recently, mega frame is favorably employed as a suitable structural system for skyscrapers because this structural system has sufficient stiffness against the lateral forces by combination of mega members which consist of many columns and girders. Diagrid mega frame system is expected to be promising structural system for future super tall buildings. However, it takes tremendous analysis times and engineer's efforts to predict the structural behavior of tall buildings applied with diagrid mega frame system because the diagrid mega frame structure has significant numbers of elements and nodes. Therefore, efficient analytical method for all buildings applied with diagrid mega frame system has been proposed in this study to reduce the efforts and time required for the analysis and design of diagrid mega frame structure. To this end, an efficient modelling technique using the characteristics of diagrid mega frame structures and an efficient analytical model using minimal DOFs by the matrix condensation method were proposed in this study. Based on the analysis of an example structure, the effectiveness and accuracy of the proposed method have been verified by the comparison between the results of the proposed method and the conventional method.