• Title/Summary/Keyword: lateral channel doping profile

Search Result 5, Processing Time 0.015 seconds

Lateral Channel Doping Profile Measurements Using Extraction Data of Drain Voltage-Dependent Gate-Bulk MOSFET Capacitance (드레인 전압 종속 게이트-벌크 MOSFET 캐패시턴스 추출 데이터를 사용한 측면 채널 도핑 분포 측정)

  • Choi, Min-Kwon;Kim, Ju-Young;Lee, Seong-Hearn
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.10
    • /
    • pp.62-66
    • /
    • 2011
  • In this study, a new RF method to extract the drain-source voltage Vds-dependent gate-bulk capacitance of deep-submicron MOSFETs is developed by determining Vds-independent gate-source overlap capacitance using measured S-parameters. The accuracy of extraction method is verified by observing good agreements between the measured and modeled S-parameters. The lateral channel doping profile in the drain region is experimentally measured using a Vds-dependent curve of the overlap and depletion length obtained from the extracted data.

Device Optimization of N-Channel MOSFETs with Lateral Asymmetric Channel Doping Profiles

  • Baek, Ki-Ju;Kim, Jun-Kyu;Kim, Yeong-Seuk;Na, Kee-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • In this paper, we discuss design considerations for an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a lateral asymmetric channel (LAC) doping profile. We employed a $0.35\;{\mu}m$ standard complementary MOSFET process for fabrication of the devices. The gates to the LAC doping overlap lengths were 0.5, 1.0, and $1.5\;{\mu}m$. The drain current ($I_{ON}$), transconductance ($g_m$), substrate current ($i_{SUB}$), drain to source leakage current ($i_{OFF}$), and channel-hot-electron (CHE) reliability characteristics were taken into account for optimum device design. The LAC devices with shorter overlap lengths demonstrated improved $I_{ON}$ and $g_m$ characteristics. On the other hand, the LAC devices with longer overlap lengths demonstrated improved CHE degradation and $I_{OFF}$ characteristics.

Characterization of Channel Electric Field in LDD MOSFET (LDD MOSFET채널 전계의 특성 해석)

  • 한민구;박민형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.401-415
    • /
    • 1989
  • A simple but accurate analytical model for the lateral channel electric field in gate-offset structured Lightly Doped Drain MOSFET has been developed. Our model assumes Gaussian doping profile, rather than simple uniform doping, for the lightly doped region and our model can be applied to LDD structures where the junction depth of LDD is not identical to the heavily doped drain. The validity of our model has been proved by comparing our analytical results with two dimensional device simulations. Due to its simplicity, our model gives a better understanding of the mechanisms involved in reducing the electric field in the LDD MOSFET. The model shows clearly the dependencies of the lateral channel electric field on the drain and gate bias conditions and process, design parameters. Advantages of our analytical model over costly 2-D device simulations is to identify the effects of various parameters, such as oxide thickness, junction depth, gate/drain bias, the length and doping concentration of the lightly doped region, on the peak electric field that causes hot-electron pohenomena, individually. Our model can also find the optimum doping concentration of LDD which minimizes the peak electric field and hot-electron effects.

  • PDF

Preparation of Epoxy/Organoclay Nanocomposites for Electrical Insulating Material Using an Ultrasonicator

  • Park, Jae-Jun;Park, Young-Bum;Lee, Jae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.93-97
    • /
    • 2011
  • In this paper, we discuss design considerations for an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) with a lateral asymmetric channel (LAC) doping profile. We employed a 0.35 ${\mu}M$ standard complementary MOSFET process for fabrication of the devices. The gates to the LAC doping overlap lengths were 0.5, 1.0, and 1.5 ${\mu}M$. The drain current ($I_{ON}$), transconductance ($g_m$), substrate current ($I_{SUB}$), drain to source leakage current ($I_{OFF}$), and channel-hot-electron (CHE) reliability characteristics were taken into account for optimum device design. The LAC devices with shorter overlap lengths demonstrated improved $I_{ON}$ and $g_m$ characteristics. On the other hand, the LAC devices with longer overlap lengths demonstrated improved CHE degradation and $I_{OFF}$ characteristics.

Optimizing Effective Channel Length to Minimize Short Channel Effects in Sub-50 nm Single/Double Gate SOI MOSFETs

  • Sharma, Sudhansh;Kumar, Pawan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.170-177
    • /
    • 2008
  • In the present work a methodology to minimize short channel effects (SCEs) by modulating the effective channel length is proposed to design 25 nm single and double gate-source/drain underlap MOSFETs. The analysis is based on the evaluation of the ratio of effective channel length to natural/ characteristic length. Our results show that for this ratio to be greater than 2, steeper source/drain doping gradients along with wider source/drain roll-off widths will be required for both devices. In order to enhance short channel immunity, the ratio of source/drain roll-off width to lateral straggle should be greater than 2 for a wide range of source/drain doping gradients.