• Title/Summary/Keyword: latent heat exchanger

Search Result 69, Processing Time 0.021 seconds

Performance of Heat Recovery System using Evaporative Cooling (증발냉각을 이용한 배기열 회수장치의 성능에 관한 연구)

  • Yoo, Seong Yeon;Kim, Tae Ho;Kim, Myung Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Evaporative cooling is a very effective way for exhaust heat recovery that uses both latent heat and sensible heat. This study investigated the performance of a heat recovery system using evaporative cooling. The experimental apparatus comprised a plastic heat exchanger, a water spray nozzle, an air blowing fan, a water circulation pump, and measuring sensors for the temperature, humidity, and flow rate. The effectiveness of the sensible heat recovery without evaporation was measured and compared with that of the total heat recovery with evaporation. The effectiveness of the sensible and total heat recoveries decreased as the air flow rate increased, and a much higher effectiveness was obtained with the counterflow arrangement in both cases. For total heat recovery, the effectiveness increased with the water flow rate, and the parallel flow arrangement was found to be more sensitive to the water flow rate than the counterflow arrangement.

Experimental Analysis on the Heat Transfer Characteristics of the Double Pipe Heat Exchanger for Latent Heat Storage (이중관형(二重管形) 잠열축열장치(潜熱蓄熱裝置)의 전열특성(傳熱特性)에 대(對)한 실험적(實驗的) 분석(分析))

  • Kim, Y.B.;Song, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.24-32
    • /
    • 1989
  • 고밀도(高密度)의 열(熱)에너지를 저장(貯藏)하기 위(爲)한 잠열축열장치를 설계(設計), 제작(製作), 작동(作動)하는 경우 잠열축열장치의 사용목적(使用目的)에 적합(適合)한 최적설계(最適設計)와 그 효율적(效率的)인 이용(利用)을 위(爲)해서는 그 부열특성(傅熱特性)이 규명(糾明)되어야 한다. 본(本) 연구(硏究)에서는 실용화(實用化)에 필요(必要)한 이중관형(二重管形) 잠열축열장치의 방열과정(放熱過程)에서의 부열특성(傅熱特性)을 이차원적(二次元的)으로 실험(實驗) 분석(分析)하였으며, 시간변화(時間變化)에 따른 잠열재의 온도변화(溫度變化)와 응고율(凝固率)이 실험분석치(實驗分析値)와 이론분석치(理論分析値)에 있어서 잘 일치하였다. 한편 응고율(凝固率), 방열율(放熱率), 물의 온도변화(溫度變化)에 대(對)한 분석(分析)을 하였다.

  • PDF

Temperature Characteristic of Rotor of HTS Synchronous Machine cooled by Solid Nitrogen (고체질소 냉각 고온초전토 동기기용 회전자의 온도특성)

  • Jo, Young-Sik;Hong, Jung-Pyo;Lee, Ju;Sim, Ki-Deck;Sohn, Myoung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.95-97
    • /
    • 2001
  • This paper deals with cryogen, which is used solid nitrogen to keep the operating temperature of High Temperature Superconducting (HTS) synchronous machine. To make the solid nitrogen of liquid nitrogen, liquid helium (LHe) passes into and cools the heat exchanger to its own temperature. Two types of heat exchangers are designed and manufactured to make the solid nitrogen, and temperature characteristics of those compare with each other. The rotor cooled by latent heat of solid nitrogen and it is kept under 40K during 2 hours and 30 minutes without LHe.

  • PDF

Development of Preheating Module for Domestic Heating Facility, Using PCM(Phase Change Material) Thermal Storage Equipment (상변화물질(PCM)을 이용한 가정용 보일러의 잠열축열식 예열모듈 개발)

  • Son, Chul-Min;Kim, Tae-Wook;Na, Kyu-Dong
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.3
    • /
    • pp.163-169
    • /
    • 2009
  • A preheating module for domestic heating facility will increase a energy efficiency. That collects the wasted heat of exhaust gas and saves the energy. So a heating load is decreased because of a preheating that has a heating energy. Using of a preheating module, a boiler can reduce frequent operation of a burner. So it is increased persistence, decreased discharging noxious gases. Therefore we will intend to develop a heating facility that is a convenient system for the saving energy.

  • PDF

Neon liquefier system using GM cryocooler (I) (GM 냉동기를 이용한 네온 액화기 제작 (I))

  • 권운식;손명환;백승규;이언용;권영길;권용덕
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.266-268
    • /
    • 2003
  • The neon liquefier by using GM cryocooler is designed and in process of manufacturing for the cooling of 100 hp high temperature superconductor (HTS) motor. It was used the principle of thermosyphon that the rotor of the motor is cooled by the latent heat of liquidized neon. The cold-box was designed to minimize heat loss by conduction, convection, radiation. Two heat exchanger were made to liquefy neon by the direct contact of neon gas on the cold head. As a first stage of our project, evaporation apparatus will be setup in the inner field of the cold-box and then the performance of neon liquefier will be test.

  • PDF

An Experimental Study of Evaporative Heat Exchangers with Mini-channels (물의 증발잠열을 이용하는 미니채널 열교환기의 실험적 연구)

  • Lee, Hyung-Ju;Yoo, Young-June;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.245-253
    • /
    • 2010
  • The present study shows some results of developing evaporative heat exchangers with mini-channels. Heat exchangers with three different water paths were manufactured and tested to compare performances of cooling and pressure drop. Among the three types of heat exchangers, Type 2 with full-etching was proved to be the best in the cooling performances for considered operating conditions, and thus it is recommended to adopt Type 2 for its simplicity of production and outstanding performance. However, Type 1 was shown to be better when it is operated at a high air inlet temperature condition. The developed evaporative heat exchanger will be installed in Environmental Control Systems(ECSs) for aerial vehicles, and it can be used effectively in case an ECS is not only limited in its weight and volume but also required to absorb heats without supplying water (or a coolant) for a certain period of time.

  • PDF

Study on the Effect of Performance Factors on the Finned Tube Type Regenerator for Liquid Desiccant Dehumidification (액체 건조제 제습을 위한 핀튜브형 재생기의 성능인자 영향 연구)

  • Jang, Jun-Oh;Park, Moon-Soo;Kang, Kyung-Tae;Lee, Shin-Pyo;Lee, Jin-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.845-852
    • /
    • 2003
  • Liquid desiccant dehumidification system can be used effectively to save energy consumed in air conditioning as an alternative compared with conventional air conditioning systems by reducing latent heat load. The dehumidifier and the regenerator from the heart of this system. The latent part of the cooling load is handled using liquid desiccant. In this study, the experimental regenerator has been designed to study the regeneration characteristics of the aqueous triethylene glycol(TEG) system. The performance factors of the regenerator with finned tube heat exchanger were evaluated by a series of experimental runs. The regeneration process is highly dependent on the liquid desiccant conditions, such as, temperature, concentration and flow rate. In addition, the effects of the inlet air temperature, humidity and flow rate were discussed. Data obtained are useful for design guidance and performance analysis of a regenerator, particularly for a liquid desiccant cooling system.

Application of the Modified Equivalent Specific Method to the Phase Change Heat Transfer (개량된 등가비열법을 이용한 상변화 열전달의 수치해석)

  • Mok Jinho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.7 s.238
    • /
    • pp.814-819
    • /
    • 2005
  • The phase change heat transfer has been applied to the processes of machines as well as of manufacturing. The cycle in a heat exchanger includes the phase change phenomena of coolant for air conditioning, the solidification in casting process makes use of the characteristics of phase change of metal, and the welding also proceeds with melting and solidification. To predict the phase change processes, the experimental and numerical approaches are available. In the case of numerical analysis, the Enthalpy method is most widely applied to the phase change problem, comparing to the other numerical methods, i.e. the Equivalent Specific Heat method and the Temperature Recovery method. It's because that the Enthalpy method is accurate and straightforward. The Enthalpy method does not include any correction step while the correction of final temperature field is inevitable in the Equivalent Specific Heat method and the Temperature Recovery method. When the temperature field is to be used in the calculation, however, there must be converting process from enthalpy to temperature in the calculation scheme of Enthalpy method. In this study, an improved method for the Equivalent Specific Heat method is introduced whose method dose not include the correction steps and takes temperature as an independent variable so that the converting between enthalpy and temperature does not need any more. The improved method is applied to the solidification process of pure metal to see the differences of conventional and improved methods.

The economic benefit of combustible waste into energy: A contingent valuation study (Fe3C12 식각을 이용한 콘덴싱 보일러 잠열 열교환기의 응축 열전달 촉진)

  • Jang, J.H.;Ahn, J.;Shin, D.H.;Chung, T.Y.
    • Journal of Energy Engineering
    • /
    • v.22 no.3
    • /
    • pp.307-311
    • /
    • 2013
  • Heating and hot water has accounted for 68% of Korea's household energy usage. Boiler makes up the bulk of the heating and hot water production. Hence a highly efficient boiler is needed in order to reduce energy consumption. A condensing boiler that recovers latent heat is known to be highly efficient. However, it is expensive and takes more space to necessitate research for improvement. In the present study, we investigated condensation heat transfer of a surface roughened by etching treatment. The etched plate showed 9.2% increase in heat transfer compared to original plate.

Flame Stability and Emission Characteristics of Can-type Burner for Condensing Gas Boiler (응축 가스보일러용 원통형 연소기의 화염 안정성 및 배기 특성)

  • 이석희;정영식;금성민;이창언
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.237-242
    • /
    • 2000
  • This study was carried out to optimize burner of the condensing gas boiler which can save energy by utilizing the latent heat of combustion gas and reduce pollutants emission. Three reasonable distances between burner and heat exchanger were decided through the experiments of model flat burner. The optimum burner geometry was determined from flame stability, pollutant emission characteristics and applicability to practical boiler system. The boiler designed by this research reaches turn-down ratio 5:1 in the domain of equivalence ratio 0.68∼0.85 and thermal efficiency of 98%. Emission of NOx and CO concentration was under 35ppm and 104ppm.

  • PDF