• 제목/요약/키워드: lasso regularized regression

검색결과 6건 처리시간 0.016초

The Doubly Regularized Quantile Regression

  • Choi, Ho-Sik;Kim, Yong-Dai
    • Communications for Statistical Applications and Methods
    • /
    • 제15권5호
    • /
    • pp.753-764
    • /
    • 2008
  • The $L_1$ regularized estimator in quantile problems conduct parameter estimation and model selection simultaneously and have been shown to enjoy nice performance. However, $L_1$ regularized estimator has a drawback: when there are several highly correlated variables, it tends to pick only a few of them. To make up for it, the proposed method adopts doubly regularized framework with the mixture of $L_1$ and $L_2$ norms. As a result, the proposed method can select significant variables and encourage the highly correlated variables to be selected together. One of the most appealing features of the new algorithm is to construct the entire solution path of doubly regularized quantile estimator. From simulations and real data analysis, we investigate its performance.

Genomic Selection for Adjacent Genetic Markers of Yorkshire Pigs Using Regularized Regression Approaches

  • Park, Minsu;Kim, Tae-Hun;Cho, Eun-Seok;Kim, Heebal;Oh, Hee-Seok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권12호
    • /
    • pp.1678-1683
    • /
    • 2014
  • This study considers a problem of genomic selection (GS) for adjacent genetic markers of Yorkshire pigs which are typically correlated. The GS has been widely used to efficiently estimate target variables such as molecular breeding values using markers across the entire genome. Recently, GS has been applied to animals as well as plants, especially to pigs. For efficient selection of variables with specific traits in pig breeding, it is required that any such variable selection retains some properties: i) it produces a simple model by identifying insignificant variables; ii) it improves the accuracy of the prediction of future data; and iii) it is feasible to handle high-dimensional data in which the number of variables is larger than the number of observations. In this paper, we applied several variable selection methods including least absolute shrinkage and selection operator (LASSO), fused LASSO and elastic net to data with 47K single nucleotide polymorphisms and litter size for 519 observed sows. Based on experiments, we observed that the fused LASSO outperforms other approaches.

Effect of outliers on the variable selection by the regularized regression

  • Jeong, Junho;Kim, Choongrak
    • Communications for Statistical Applications and Methods
    • /
    • 제25권2호
    • /
    • pp.235-243
    • /
    • 2018
  • Many studies exist on the influence of one or few observations on estimators in a variety of statistical models under the "large n, small p" setup; however, diagnostic issues in the regression models have been rarely studied in a high dimensional setup. In the high dimensional data, the influence of observations is more serious because the sample size n is significantly less than the number variables p. Here, we investigate the influence of observations on the least absolute shrinkage and selection operator (LASSO) estimates, suggested by Tibshirani (Journal of the Royal Statistical Society, Series B, 73, 273-282, 1996), and the influence of observations on selected variables by the LASSO in the high dimensional setup. We also derived an analytic expression for the influence of the k observation on LASSO estimates in simple linear regression. Numerical studies based on artificial data and real data are done for illustration. Numerical results showed that the influence of observations on the LASSO estimates and the selected variables by the LASSO in the high dimensional setup is more severe than that in the usual "large n, small p" setup.

Household, personal, and financial determinants of surrender in Korean health insurance

  • Shim, Hyunoo;Min, Jung Yeun;Choi, Yang Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제28권5호
    • /
    • pp.447-462
    • /
    • 2021
  • In insurance, the surrender rate is an important variable that threatens the sustainability of insurers and determines the profitability of the contract. Unlike other actuarial assumptions that determine the cash flow of an insurance contract, however, it is characterized by endogenous variables such as people's economic, social, and subjective decisions. Therefore, a microscopic approach is required to identify and analyze the factors that determine the lapse rate. Specifically, micro-level characteristics including the individual, demographic, microeconomic, and household characteristics of policyholders are necessary for the analysis. In this study, we select panel survey data of Korean Retirement Income Study (KReIS) with many diverse dimensions to determine which variables have a decisive effect on the lapse and apply the lasso regularized regression model to analyze it empirically. As the data contain many missing values, they are imputed using the random forest method. Among the household variables, we find that the non-existence of old dependents, the existence of young dependents, and employed family members increase the surrender rate. Among the individual variables, divorce, non-urban residential areas, apartment type of housing, non-ownership of homes, and bad relationship with siblings increase the lapse rate. Finally, among the financial variables, low income, low expenditure, the existence of children that incur child care expenditure, not expecting to bequest from spouse, not holding public health insurance, and expecting to benefit from a retirement pension increase the lapse rate. Some of these findings are consistent with those in the literature.

상업용 리튬 배터리의 수명 예측을 위한 고속대량충방전 데이터 정규화 선형회귀모델의 적용 (Application of Regularized Linear Regression Models Using Public Domain data for Cycle Life Prediction of Commercial Lithium-Ion Batteries)

  • 김장군;이종숙
    • 한국수소및신에너지학회논문집
    • /
    • 제32권6호
    • /
    • pp.592-611
    • /
    • 2021
  • In this study a rarely available high-throughput cycling data set of 124 commercial lithium iron phosphate/graphite cells cycled under fast-charging conditions, with widely varying cycle lives ranging from 150 to 2,300 cycles including in-cycle temperature and per-cycle IR measurements. We worked out own Python codes which reproduced the various data plots and machine learning approaches for cycle life prediction using early cycles and more details not presented in the article and the supplementary information. Particularly, we applied regularized ridge, lasso and elastic net linear regression models using features extracted from capacity fade curves, discharge voltage curves, and other data such as internal resistance and cell can temperature. We found that due to the limitation in the quantity and quality of the data from costly and lengthy battery testing a careful hyperparameter tuning may be required and that model features need to be extracted based on the domain knowledge.

Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization

  • Li, Ning;Asteris, Panagiotis G.;Tran, Trung-Tin;Pradhan, Biswajeet;Nguyen, Hoang
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.733-745
    • /
    • 2022
  • This study proposed a robust artificial intelligence (AI) model based on the social behaviour of the imperialist competitive algorithm (ICA) and artificial neural network (ANN) for modelling the deflection of reinforced concrete beams, abbreviated as ICA-ANN model. Accordingly, the ICA was used to adjust and optimize the parameters of an ANN model (i.e., weights and biases) aiming to improve the accuracy of the ANN model in modelling the deflection reinforced concrete beams. A total of 120 experimental datasets of reinforced concrete beams were employed for this aim. Therein, applied load, tensile reinforcement strength and the reinforcement percentage were used to simulate the deflection of reinforced concrete beams. Besides, five other AI models, such as ANN, SVM (support vector machine), GLMNET (lasso and elastic-net regularized generalized linear models), CART (classification and regression tree) and KNN (k-nearest neighbours), were also used for the comprehensive assessment of the proposed model (i.e., ICA-ANN). The comparison of the derived results with the experimental findings demonstrates that among the developed models the ICA-ANN model is that can approximate the reinforced concrete beams deflection in a more reliable and robust manner.