• 제목/요약/키워드: laser scan

검색결과 358건 처리시간 0.027초

A Hybrid Semantic-Geometric Approach for Clutter-Resistant Floorplan Generation from Building Point Clouds

  • Kim, Seongyong;Yajima, Yosuke;Park, Jisoo;Chen, Jingdao;Cho, Yong K.
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.792-799
    • /
    • 2022
  • Building Information Modeling (BIM) technology is a key component of modern construction engineering and project management workflows. As-is BIM models that represent the spatial reality of a project site can offer crucial information to stakeholders for construction progress monitoring, error checking, and building maintenance purposes. Geometric methods for automatically converting raw scan data into BIM models (Scan-to-BIM) often fail to make use of higher-level semantic information in the data. Whereas, semantic segmentation methods only output labels at the point level without creating object level models that is necessary for BIM. To address these issues, this research proposes a hybrid semantic-geometric approach for clutter-resistant floorplan generation from laser-scanned building point clouds. The input point clouds are first pre-processed by normalizing the coordinate system and removing outliers. Then, a semantic segmentation network based on PointNet++ is used to label each point as ceiling, floor, wall, door, stair, and clutter. The clutter points are removed whereas the wall, door, and stair points are used for 2D floorplan generation. A region-growing segmentation algorithm paired with geometric reasoning rules is applied to group the points together into individual building elements. Finally, a 2-fold Random Sample Consensus (RANSAC) algorithm is applied to parameterize the building elements into 2D lines which are used to create the output floorplan. The proposed method is evaluated using the metrics of precision, recall, Intersection-over-Union (IOU), Betti error, and warping error.

  • PDF

편측성 교근비대 환자에서 편측 보툴리눔 독소 주사 후 안모의 변화 (The Change of Facial Contouring after Unilateral Injection of Botulinum Toxin in Unilateral Masseter Hypertrophy Patients)

  • 차유림;김영건;김지현;심영주;김성택
    • 구강회복응용과학지
    • /
    • 제27권2호
    • /
    • pp.247-251
    • /
    • 2011
  • 교근비대 환자들은 그들의 각진 턱을 심미적으로 개선시키기 위해 교근 두께를 줄이기를 희망한다. 과거엔 수술적인 방법이 널리 알려져 왔지만 최근 양측으로 주사하는 보톡스 시술이 수술에 비해 덜 침습적이기에 그 대안으로 관심이 대두되고 있다. 이 연구의 목적은 기존의 양측성 교근비대에서 양측에 동량을 주사하는 방법과 달리 편측성 교근비대 환자에서 보툴리눔 독소를 편측으로만 주입 후 삼차원 레이저스캐너를 이용하여 안모의 부피변화를 측정하고자 하였다. 삼차원 레이저스캐너를 이용하여 술전에 편측성 교근비대 환자 10명의 하안모 부피를 측정한 후, 편측으로 보툴리눔 A형 독소 주사 25U이 주사되었다. 주사 4주, 8주, 12주 후 같은 방법으로 하안모의 부피를 측정한 뒤 술전의 삼차원 사진과 중첩하여 변화된 부피를 측정하였다. 주사한 쪽의 부피는 술전에 비해 보툴리눔 독소 주사 4주, 8주, 12주 후 현저히 줄어들었으며 통계학적으로 유의미한 결과를 보였다. 반면 주사안한 쪽의 부피는 특기할 변화가 없었다. 따라서 편측성 교근비대 환자에서 편측 보툴리눔 독소 주사 후 주사한 쪽의 부피가 현저히 감소하여 근육성 비대칭 환자에서 편측 보툴리눔 독소 주사가 심미적 개선에 도움을 줄 수 있을 것으로 사료된다.

광음향 신호처리를 이용한 표면결함의 영상 기술 (Image Technique of Surface Defects by Using Photoacoustic Signal Processing)

  • 이종호;전계석
    • 한국음향학회지
    • /
    • 제13권6호
    • /
    • pp.45-49
    • /
    • 1994
  • 본 논문에서는 출력이 2W이고 파장이 $10.6{\mu}m$인 CW $CO_{2}$ 레이저와 PZT 5A 음향변화 소자를 사용하여 광음향 영상처리 시스템을 구성하였으며 샘플로서 5mm 두께의 스텐레스강을 사용하여 그 표면에 폭과 깊이가 $50{\mu}m$, 선간격이 각각 $200{\mu}m$, $300{\mu}m$가 되도록 3선의 선형결함을 방전가공하고 $2.2mm\times2mm$의 스캔범위를 취하여 표면결함을 영상화한 결과 레이저 변조주파수가 100Hz 일때 $50{\mu}m$의 해상력을 갖는 양질의 영상을 보였다.

  • PDF

FPGA-based design and implementation of data acquisition and real-time processing for laser ultrasound propagation

  • Abbas, Syed Haider;Lee, Jung-Ryul;Kim, Zaeill
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제17권4호
    • /
    • pp.467-475
    • /
    • 2016
  • Ultrasonic propagation imaging (UPI) has shown great potential for detection of impairments in complex structures and can be used in wide range of non-destructive evaluation and structural health monitoring applications. The software implementation of such algorithms showed a tendency in time-consumption with increment in scan area because the processor shares its resources with a number of programs running at the same time. This issue was addressed by using field programmable gate arrays (FPGA) that is a dedicated processing solution and used for high speed signal processing algorithms. For this purpose, we need an independent and flexible block of logic which can be used with continuously evolvable hardware based on FPGA. In this paper, we developed an FPGA-based ultrasonic propagation imaging system, where FPGA functions for both data acquisition system and real-time ultrasonic signal processing. The developed UPI system using FPGA board provides better cost-effectiveness and resolution than digitizers, and much faster signal processing time than CPU which was tested using basic ultrasonic propagation algorithms such as ultrasonic wave propagation imaging and multi-directional adjacent wave subtraction. Finally, a comparison of results for processing time between a CPU-based UPI system and the novel FPGA-based system were presented to justify the objective of this research.

CLSM [Confocal Laser Scanning Microscope] Observation of the Surface Roughness of Pressurized Rock Samples During Freeze/Thaw Cycling

  • Kim, Hye-jin;Choi, Junghae;Chae, Byung-gon;Kim, Gyo-won
    • 지질공학
    • /
    • 제25권2호
    • /
    • pp.165-178
    • /
    • 2015
  • Physical and chemical weathering degrades rock, affecting its structural properties and thus the stability of stone buildings or other structures. Confocal laser scan microscopy (CLSM) is used here to observe temporal changes in the surface roughness of rock samples under simulated accelerated weathering. Samples were pressurized to 50, 55, or 70 MPa using a pressure frame, and subjected to freeze/thaw cycling controlled by a thermostat. The temperature was cycled from -20℃ to 40℃ and back. After each 20 cycles, CLSM was used to assess the change in surface roughness, and roughness factors were calculated to quantify the progression of the surface condition over time. Variations in cross-section line-roughness parameters and surface-roughness parameters were analyzed for specific parts of the sample surfaces at 5× and 50× magnification. The result reveals that the highest and lowest values of the roughness factors are changed according to elapsed time. Freezing/thawing at high pressure caused larger changes in the roughness factor than at low pressure.

다중센서 융합 상이 지도를 통한 다중센서 기반 3차원 복원 결과 개선 (Refinements of Multi-sensor based 3D Reconstruction using a Multi-sensor Fusion Disparity Map)

  • 김시종;안광호;성창훈;정명진
    • 로봇학회논문지
    • /
    • 제4권4호
    • /
    • pp.298-304
    • /
    • 2009
  • This paper describes an algorithm that improves 3D reconstruction result using a multi-sensor fusion disparity map. We can project LRF (Laser Range Finder) 3D points onto image pixel coordinatesusing extrinsic calibration matrixes of a camera-LRF (${\Phi}$, ${\Delta}$) and a camera calibration matrix (K). The LRF disparity map can be generated by interpolating projected LRF points. In the stereo reconstruction, we can compensate invalid points caused by repeated pattern and textureless region using the LRF disparity map. The result disparity map of compensation process is the multi-sensor fusion disparity map. We can refine the multi-sensor 3D reconstruction based on stereo vision and LRF using the multi-sensor fusion disparity map. The refinement algorithm of multi-sensor based 3D reconstruction is specified in four subsections dealing with virtual LRF stereo image generation, LRF disparity map generation, multi-sensor fusion disparity map generation, and 3D reconstruction process. It has been tested by synchronized stereo image pair and LRF 3D scan data.

  • PDF

3D 스캔과 CFD를 활용한 LPG 폭발사고의 누출량 산정에 관한 연구 (A Study on Calculation of Leakage for LPG Explosion Accident using 3D Scan and CFD)

  • 조완수;김의수
    • 한국안전학회지
    • /
    • 제33권3호
    • /
    • pp.1-7
    • /
    • 2018
  • Recently, various engineering approaches have been widely used in the accident investigation field to identify the cause of the accident and to predict damage by accident. Computational analysis is the most commonly used method of accident investigation technique. This technique is mainly used to identify the mechanism of the accident generation and to determine the cause when it is difficult to reproduce the situation at the time of the accident or when it is impossible to perform a reproduction experiment. In this study, The gas explosion analysis for LPG explosion accident generated by defect of the blocking action was performed to determine the accident object, gas leakage amount and predicted the damage caused by the accident using 3D laser scanner and FLACS program. We can quantify the explosive power by LPG gas accident and predict the gas leakage amount, damage by accident and evaluate the stability of the structure through this study. In the future, This method can be widely used in the field of gas safety by improving the reliability and validity of the analysis.

3D Printed Flexible Cathode Based on Cu-EDTA that Prepared by Molecular Precursor Method and Microwave Processing for Electrochemical Machining

  • Yan, Binggong;Song, Xuan;Tian, Zhao;Huang, Xiaodi;Jiang, Kaiyong
    • Journal of Electrochemical Science and Technology
    • /
    • 제11권2호
    • /
    • pp.180-186
    • /
    • 2020
  • In this work, a metal-ligand solution (Cu-EDTA) was prepared based on the molecular precursor method and the solution was spin-coated onto 3D printed flexible photosensitive resin sheets. After being processed by microwave, a laser with a wavelength of 355 nm was utilized to scan the spin-coated sheets and then the sheets were immersed in an electroless copper plating solution to deposit copper wires. With the help of microwave processing, the adhesion between copper wires and substrate was improved which should result from the increase of roughness, decrease of contact angle and the consistent orientation of coated film according to the results of 3D profilometer and SEM. XPS results showed that copper seeds formed after laser scanning. Using the 3D printed flexible sheets as cathode and galvanized iron as anode, electrochemical machining was conducted.

Using Field Programmable Gate Array Hardware for the Performance Improvement of Ultrasonic Wave Propagation Imaging System

  • Shan, Jaffry Syed;Abbas, Syed Haider;Kang, Donghoon;Lee, Jungryul
    • 비파괴검사학회지
    • /
    • 제35권6호
    • /
    • pp.389-397
    • /
    • 2015
  • Recently, wave propagation imaging based on laser scanning-generated elastic waves has been intensively used for nondestructive inspection. However, the proficiency of the conventional software based system reduces when the scan area is large since the processing time increases significantly due to unavoidable processor multitasking, where computing resources are shared with multiple processes. Hence, the field programmable gate array (FPGA) was introduced for a wave propagation imaging method in order to obtain extreme processing time reduction. An FPGA board was used for the design, implementing post-processing ultrasonic wave propagation imaging (UWPI). The results were compared with the conventional system and considerable improvement was observed, with at least 78% (scanning of $100{\times}100mm^2$ with 0.5 mm interval) to 87.5% (scanning of $200{\times}200mm^2$ with 0.5 mm interval) less processing time, strengthening the claim for the research. This new concept to implement FPGA technology into the UPI system will act as a break-through technology for full-scale automatic inspection.

프린지 투영법을 이용한 실시간 3D 구강 내 스캐너의 개발 (Development of a Real-time 3D Intraoral Scanner Based on Fringe-Projection Technique)

  • ;이건수;박강
    • 한국CDE학회논문집
    • /
    • 제17권3호
    • /
    • pp.156-163
    • /
    • 2012
  • Real-time three-dimensional shape measurement is becoming increasingly important in various fields, including medical sciences, high-technology industry, and microscale measurements. However, there are not so many 3D profile tools specially designed for specifically narrow space, for example, to scan the tooth shape of a human jaw. In this paper, a real-time 3D intraoral scanner is proposed for the measurement of tooth profile in the mouth cavity. The proposed system comprises a laser diode beam, a micro charge-coupled device, a graticule, a piezoelectric transducer, a set of optical lenses, and a polhemus device sensor. The phase-shifting technique is used along with an accurate calibration method for the measurement of the tooth profile. Experimental and theoretical inspection of the phase-to-coordinate relation is presented. In addition, a nonlinear system model is developed for collimating illumination that gives the more accurate mathematical representation of the system, thus improves the shape measurement accuracy. Experiment results are presented to verify the feasibility and performance of the developed system. The experimental results indicate that overall measurement error accuracy can be controlled within 0.4 mm with a variability of ${\pm}0.01$.