• Title/Summary/Keyword: laser repair

Search Result 87, Processing Time 0.023 seconds

Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

  • Erdemir, Ugur;Sancakli, Hande Sar;Sancakli, Erkan;Eren, Meltem Mert;Ozel, Sevda;Yucel, Taner;Yildiz, Esra
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.434-443
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS. A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of $6mm{\times}4mm$ and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with $30{\mu}m$ silica oxide particles ($Cojet^{TM}$ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at ${\alpha}=.05$. RESULTS. Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION. Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used.

Effects of Low-level Light Therapy at 740 nm on Dry Eye Disease In Vivo

  • Goo, Hyeyoon;Kim, Hoon;Ahn, Jin-Chul;Cho, Kyong Jin
    • Medical Lasers
    • /
    • v.8 no.2
    • /
    • pp.50-58
    • /
    • 2019
  • Background and Objectives Low-level light therapy (LLLT) is an application of low-power light for various purposes such as promoting tissue repair, reducing inflammation, causing analgesia, etc. A previous study suggested the effect of light emitting diode (LED) light with the wavelength of 740 nm for promoting wound healing of corneal epithelial cells. This current study aimed to confirm the effect of LLLT for managing inflammation of a dry eye disease (DED) mouse model. Materials and Methods A total of 50C57BL/6 female mice were randomly grouped into 5 groups to compare the effect of LLLT:1) Control group, 2) Only LLLT group, 3) Dry eye group, 4) LLLT in dry eye group, and 5) Early treatment group. DED was induced with 4 daily injections of scopolamine hydrobromide and desiccation stress for 17 days, and LLLT at 740 nm was conducted once every 3 days. To analyze the effect of LLLT on the DED mouse model, tear volume, corneal surface irregularities, and fluorescence in stained cores were measured, and the level of inflammation was assessed with immunohistochemistry. Results The DED mouse model showed significant deterioration in the overall eye condition. After LLLT, the amount of tear volume was increased, and corneal surface irregularities were restored. Also, the number of neutrophils and the level of inflammatory cytokines significantly decreased as well. Conclusion This study showed that LLLT at 740 nm was effective in controlling the corneal conditions and the degree of inflammation in DED. Such findings may suggest therapeutic effects of LLLT at 740 nm on DED.

A Study on Micro-Electrode Pattern of Repair Process Using Electrohydrodynamic Printing System (전기수력학 프린팅 기술을 이용한 미세전극 패턴의 리페어 공정 적용에 관한 연구)

  • Yang, Young-Jin;Kim, Soo-Wan;Kim, Hyun-Bum;Yang, Hyung-Chan;Lim, Jong-Hwan;Choi, Kyung-Hyun
    • Clean Technology
    • /
    • v.22 no.4
    • /
    • pp.232-240
    • /
    • 2016
  • Recently, various research studies have been conducted and many are in progress for the suitable alternative materials for ITO based touch screen panel (TSP) due to limitations in size and flexibility. Various researches from all over the world have been attempted to fabricate the fine electrode less than $5{\mu}m$ for the rapid developing of display technology. Research is also being carried out in metal mesh methods using the existing technologies and alternative materials at commercial level. However, by using the existing technologies certain discrepancies are observed like low transparency and low yield which also results in the distortion of patterns. For repairing the damaged pattern, the conventional laser CVD technique has also been used but there are some challenges observed in CVD technique like achieving a stable fine electrode of $10{\mu}m$ or less and avoiding the formation of satellite drops. To overcome these issues, a new printing process named Electrohydrodynamic (EHD) printing, has been introduced by which $5{\mu}m$ fine patterns can be printed in one step. This EHDA printing technique has been applied to print very fine electrodes of $5{\mu}m$ or less by using conductive inks of various viscosities. This study also presents the optimized process parameters for printing $5{\mu}m$ fine electrode patterns during experiments by controlling the applied voltage and supply flow rate. The $5{\mu}m$ repair electrodes were fabricated for repairing $50{\mu}m$ shorted electrode samples.

Early Diagnosis for Mucopolysaccharidosis I - A 6-month-old Female Infant Presenting with Gibbus, Hirsutism and Mongolian Spots in a Well Baby Clinic

  • Lin, Hsiang-Yu;Chuang, Chih-Kuang;Chang, Jui-Hsing;Lin, Shuan-Pei
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.23-26
    • /
    • 2016
  • Mucopolysaccharidosis (MPS) I is a rare, progressive and multisystemic disease with insidious initial signs and symptoms, and making an early diagnosis can be a challenge for the first-line general medical practitioner. We report a 6-month-old girl who was brought to our well baby clinic for regular immunization with the manifestations of lumbar gibbus, hirsutism, large Mongolian spots over back and buttock, and mild bilateral legs spasticity noticed by the general pediatrician, and then newly diagnosed with MPS I after referral to the geneticist in time. Her surgical history included inguinal hernia repair at 1 month old, $CO_2$ laser supraglottoplasty for laryngomalacia and tracheostomy due to chronic respiratory failure with ventilator dependence at 2 months old. Understanding and identification of the early signs and symptoms of this disease have the potential to early diagnosis and timely appropriate treatment, which could contribute to a better clinical outcome.

Investigation of the Effect of Wear Particles on the Acoustic Emission Signal (마모 입자가 음향방출신호에 미치는 영향에 관한 연구)

  • Han, Jae-Ho;Shin, Dong-Gap;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.317-322
    • /
    • 2019
  • In spite of progress in tribological research, machine component failure due to friction and wear has been reported frequently. This failure may lead to secondary damage that can cause huge expense for maintenance and repair. To prevent economic loss, it is important to detect and predict the initial failure point. In this sense, various researchers have been tried to develop Condition Monitoring (CM) method using Acoustic Emission (AE) generated while the materials undergo failure. In this study, effect of particles on friction and wear was investigated using the pin-on-plate friction test and AE signal was recorded with a band-width type AE sensor. The experiments were performed in dry and lubricant conditions using steel and glass as specimens. After the experiment, 3D laser microscope image was captured to evaluate the wear behavior quantitatively. The AE signal was analyzed in time-domain and frequency-domain. The amplitude was compared with the frictional results. The results of this study showed that particle generation accelerate wear, generate high magnitude AE signal and change the frequency characteristics of the signal. Also, lubricant condition test results showed low coefficient of friction, low wear rate, and low magnitude of AE signal compared to the dry condition. It is expected that the results of this study will aid in better assessment of wear in CM technology

Investigation into the Effects of Process Parameters of DED Process on Deposition and Residual Stress Characteristics for Remanufacturing of Mechanical Parts (기계 부품 재제조를 위한 DED 공정 조건에 따른 적층 및 잔류응력 특성 분석)

  • Kim, D.A.;Lee, K.K.;Ahn, D.G.
    • Transactions of Materials Processing
    • /
    • v.30 no.3
    • /
    • pp.109-118
    • /
    • 2021
  • Recently, there has been an increased interest in the remanufacturing of mechanical parts using metal additive manufacturing processes in regards to resource recycling and carbon neutrality. DED (directed energy deposition) process can create desired metallic shapes on both even and uneven substrate via line-by-line deposition. Hence, DED process is very useful for the repair, retrofit and remanufacturing of mechanical parts with irregular damages. The objective of the current paper is to investigate the effects DED process parameters, including the effects of power and the scan speed of the laser, on deposition and residual stress characteristics for remanufacturing of mechanical parts using experiments and finite element analyses (FEAs). AISI 1045 is used as the substrate material and the feeding powder. The characteristic dimensions of the bead shape and the heat affected zone (HAZ) for different deposition conditions are obtained from the experimental results. Efficiencies of the heat flux model for different deposition conditions are estimated by the comparison of the results of FEAs with those of experiments in terms of the width and the depth of HAZ. In addition, the influence of the process parameters on residual stress distributions in the vicinity of the deposited region is investigated using the results of FEAs. Finally, a suitable deposition condition is predicted in regards to the bead formation and the residual stress.

The Effect of Animal Physiotherapy on Balance and Walking in Dog with Sciatic Nerve Injury and Degenerative Joint Disease, Case Report

  • Lee, Shinho;Cha, Yuri
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.3
    • /
    • pp.279-284
    • /
    • 2022
  • Objective: This study was conducted to confirm the effect of physiotherapy on the balance and walking in dog with sciatic nerve injury and degenerative arthritis of stifle joints. Design: Single case study Methods: The dog walked abnormally for six months and was administrated in S animal hospital. The dog's right hindlimb was operated for cranial cruciate ligament repair and the dog had been taking a nonsteroidal anti-inflammatory analgesic before being refered. There was severe degenerated osteoarthritis in the right hindlimb. During stance and walking, the right hindlimb was often shown partial weight bearing. The dog's left hindlimb was shown plantigrade stance and walking. The radiograph was shown an intact calcaneal tendon in the left hindlimb. In the neurologic examination, sciatic nerve injury in the left hindlimb was confirmed. The dog was treated using muscle strengthening, proprioceptive exercise, underwater treadmill and Laser therapy two, or three times a week for 3 months. At the 10th and 17th treatment, it was evaluated through stance and gait analyzer system to measure dog's balance and walking. Results: 3 months following physiotherapy, the dog's balance was improved in center of pressure(COP). And peak vertical force(PVF), vertical impulse(VI) was increased in right hindlimb and double stance was decreased. Conclusions: Physiotherapy may have improved the prognosis in this dog with severe osteoarthritis and sciatic nerve injury. This study suggested that animal physiotherapy is a valuable way to improve balance and walking.

A Study on Cladding on an Inclined Cylindrical Surface using DED Additive Manufacturing (DED 적층 방식을 활용한 원통면 경사 적층에 관한 연구)

  • Kim, Yeoung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.91-97
    • /
    • 2022
  • The Directed Energy Deposition (DED) is a representative metal additive manufacturing method. Owing to its strong point of repairment, its application is gradually spreading in aerospace applications, power generation, military components, and mold making. 5-axis cladding is needed to repair damage, such as wear and scratches on cylindrical surfaces to circular-shaped parts, including sleeves and liners. Furthermore, the condition of cladding on inclined parts must also be considered to prevent interference between the nozzle and the part. In this study, the effects of changes in scanning speed due to the 5-axis control system and differences from the height of laser beam irradiation due to inclination are evaluated among the items that should be additionally considered in 5-axis cladding compared to 3-axis cladding. Moreover, the trends of the width and height of the clad are identified by different tilting angles via single line cladding. Lastly, cladding methods on cylindrical surfaces at various angles are proposed to enhance the clad quality and post-processing efficacy. These results can be applied with 5-axis cladding on inclined surfaces, including cylindrical surfaces.

Effect of Various Surface Treatment Methods on Shear Bond Strength of Orthodontic Brackets to Aged Composite Resin (시효된 복합레진 표면에 다양한 표면 처리 후 부착한 교정용 브라켓의 전단응력)

  • Park, Jongcheol;Park, Howon;Lee, Juhyun;Seo, Hyunwoo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.41 no.2
    • /
    • pp.125-133
    • /
    • 2014
  • The purpose of this study was to investigate the effect of various surface treatment methods on the shear bond strength of orthodontic brackets in vitro. Ninety six specimens, 6 mm in diameter and 5 mm in height, were made with composite resin ($Filtek^{TM}$ Z350 XT, 3M ESPE, USA) and treated with an aging procedure. After aging, the specimens were randomly separated in six groups: (1) control with no surface treatment, (2) 37% phosphoric acid gel, (3) 4% hydrofluoric acid gel, (4) sodium bicarbonate particle abrasion, (5) diamond bur, and (6) 1 W carbon dioxide laser for 5s. The metal brackets were bonded to composite surfaces by means of an orthodontic adhesive (Transbond XT, 3M Unitek, USA). Shear bond strength values were evaluated with a universal testing machine (R&B Inc., Korea). Analysis of variance showed a significant difference between the groups. Group 5 had the highest mean shear bond strength (11.9 MPa), followed by group 6 (11.1 MPa). Among the experimental groups, group 2 resulted in the weakest mean shear bond strength (5.22 MPa). The results of this study suggest that the repair shear bond strength of the aged composite resin was acceptable by surface treatment with a carbon dioxide laser.

Design of a Displacement and Velocity Measurement System Based on Environmental Characteristic Analysis of Laser Sensors for Automatic Mooring Devices (레이저 센서의 환경적 특성 분석에 기반한 선박 자동계류장치용 변위 및 속도 측정시스템 설계)

  • Jin-Man Kim;Heon-Hui Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.980-991
    • /
    • 2023
  • To prevent accidents near the quay caused by a ship, ports are generally designed and constructed through navigation and berthing safety assessment. However, unpredictable accidents such as ship collisions with the quay or personal accidents caused by ropes still occur sometimes during the ship berthing or mooring process. Automatic mooring systems, which are equipped with an attachment mechanism composed of robotic manipulators and vacuum pads, are designed for rapid and safe mooring of ships. This paper deals with a displacement and velocity measurement system for the automatic mooring device, which is essential for the position and speed control of the vacuum pads. To design a suitable system for an automatic mooring device, we first analyze the sensor's performance and outdoor environmental characteristics. Based on the analysis results, we describe the configuration and design methods of a displacement and velocity measurement system for application in outdoor environments. Additionally, several algorithms for detecting the sensor's state and estimating a ship's velocity are developed. The proposed method is verified through some experiments for displacement and speed measurement targeted at a moving object with constant speed.