• 제목/요약/키워드: laser light scattering method

검색결과 66건 처리시간 0.028초

산란이론과 신경회로에 의한 입자크기계측 (Particle Sizing Using Light Scattering and Neural Networks)

  • 남부희;이상재;박민현;이영진;이석원;류태우;방병렬
    • 제어로봇시스템학회논문지
    • /
    • 제6권6호
    • /
    • pp.447-453
    • /
    • 2000
  • Using the scattering theory of laser light, we analyze the particle sizing method. The scattered profile measured by the photodetector is sampled, scale conditioned by a 32 channel analog-to-digital converter, and is analyzed with the transform matrix from the light energy signals to the weights of the particle sizes. The particle size distribution is classified using the Hopfield neural network method as well as the conventional nonnegative least square method.

  • PDF

Dynamic Light Scattering Method를 이용한 수중유형 Microemulsion의 제조조건 평가 (Process Evaluation in Preparing Oil in Water Microemulsion by Dynamic Light Scattering Method)

  • 민신홍;양중익;권종원;정대식;정엽
    • Journal of Pharmaceutical Investigation
    • /
    • 제17권1호
    • /
    • pp.41-46
    • /
    • 1987
  • Oil in water microemulsion containing soybean oil and egg phosphatide was prepared by vacuum high shear mixing and high pressure homogenizing. The laser particle sizer, Coulter counter and photomicroscope were used to determine the particle size distribution at each cycle of homogenizing. Particularly, the laser particle sizer(dynamic light scattering method) was applied to the study of particle size distribution behavior below $1\;{\mu}m$. It was found that the particle size distribution below $1\;{\mu}m$ was shifted to lower size range as the number of passing cycle was increased. Beyond the 7th cycle, however, the particle size distribution was not varied.

  • PDF

The Effect of an Optical Clearing Agent on Tissue Prior to 1064-nm Laser Therapy

  • Youn, Jong-In
    • Medical Lasers
    • /
    • 제10권3호
    • /
    • pp.146-152
    • /
    • 2021
  • Background and Objectives Although lasers have been widely applied in tissue treatment, the light penetration depth in tissues is limited by the tissue turbidity and affected by its absorption and scattering characteristics. This study investigated the effect of using an optical clearing agent (OCA) on tissue to improve the therapeutic effect of 1064 nm wavelength laser light by reducing the heat generated on the skin surface and increasing the penetration depth. Materials and Methods A diode laser (λ = 1064 nm) was applied to a porcine specimen with and without OCA to investigate the penetration depth of the laser light and temperature distribution. A numerical simulation using the finite element method was performed to investigate the temperature distribution of the specimen compared to ex-vivo experiments using a thermocouple and double-integrating sphere to measure the temperature profile and optical properties of the tissue, respectively. Results Simulation results showed a decrease in tissue surface temperature with increased penetration depth when the OCA was applied. Furthermore, both absorption and scattering coefficients decreased with the application of OCA. In ex-vivo experiments, temperatures decreased for the tissue surface and the fat layer with the OCA, but not for the muscle layer. Conclusion The use of an OCA may be helpful for reducing surface heat generation and enhance the light penetration depth in various near-infrared laser treatments.

Velocity measurements in complex flows of non-Newtonian fluids

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • 제14권3호
    • /
    • pp.93-105
    • /
    • 2002
  • Experimental methods for making quantitative measurements of velocity fields in non-Newtonian fluids are reviewed. Techniques based on light scattering spectroscopy - laser Doppler velocimetry and homodyne light scattering spectroscopy, techniques based on imaging the displacement of markers - including particle image velocimetry and molecular tagging velocimetry, and techniques based on nuclear magnetic resonance imaging are discussed. The special advantages and disadvantages of each method are summarized, and their applications to non-Newtonian flows are briefly reviewed. Example data from each technique are also included.

A Proposal for Optical Diagnostics Through the Enhancement of Diffraction Patterns Using Thin-film Interference Filters

  • Stefanita Carmen Gabriela;Shao Yun Feng
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권6호
    • /
    • pp.428-434
    • /
    • 2004
  • Coarse clumping of solid materials within diseased biological cells can have a marked influence on the light scattering pattern. Perturbations in refractive index lead to distinct varia­tions in the cytometric signature, especially apparent over wide scattering angles. The large dynamic range of scattering intensities restricts collection of data to narrow angular intervals be­lieved to have the highest potential for medical diagnosis. We propose the use of an interfer­ence filter to reduce the dynamic range. Selective attenuation of scattering intensity levels is expected to allow simultaneous data collection over a wide angular interval. The calculated angu­lar transmittance of a commercial shortwave-pass filter of cut-off wavelength 580 nm indicates significant attenuation of scattering peaks below ${\~}\;10^{circ}$, and reasonable peak equalization at higher angles. For the three-dimensional calculation of laser light scattered by cells we use a spectral method code that models cells as spatially varying dielectrics, stationary in time. How­ever, we perform preliminary experimental testing with the interference filter on polystyrene microspheres instead of biological cells. A microfluidic toolkit is used for the manipulation of the microspheres. The paper intends to illustrate the principle of a light scattering detection system incorporating an interference filter for selective attenuation of scattering peaks.

Image Through a Scattering Medium using Femtosecond light pulse gating method

  • Chen, Guofu
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 하계학술발표회
    • /
    • pp.1-1
    • /
    • 2000
  • This paper presents a holography through high scatter mediums. Femtosecond light pulses are used as object light and reference light. When light passes through a high scatter medium, there are ballistic light, snake light and difussive light in transmitting light. However, ballistic and snake light are very weak, difussive light is very stronge so that they can not be imaged directly, By using femtosecond laser electronic holographic gating method to gate ballistic light and snake light and multi-holograms processing technology, high quality images can be obtained. (omitted)

  • PDF

아세톤 형광을 이용한 공연비 측정 기법 연구 (An Experimental Investigation of Air Fuel Ratio Measurement using Laser Induced Acetone Fluorescence)

  • 박승재;허환일;오승묵
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.353-356
    • /
    • 2002
  • Planar laser induced fluorescence(PLIF) has been widely used to obtain two dimensional fuel distribution. Preliminary investigation was performed to measure quantitative air excess ratio distribution in an engine fueled with LPG. It is known that fluorescence signal from acetone as a fluorescent tracer is less sensitive to oxygen quenching than other dopants. Acetone was excited by KrF excimer laser (248nm) and its fluorescence image was acquired by ICCD camera with a cut-of filter to suppress Mie scattering from the laser light. For the purpose of quantifying PLIF signal, an image processing method including the correction of laser sheet beam profile was suggested. Raw images were divided by each intensity of laser energy and profile of laser sheet beam. Inhomogeneous fluorescence images scaled with the reference data, which was taken by a calibration process, were converted to air excess ratio distribution. This investigation showed instantaneous quantitative measurement of planar air excess ratio distribution for gaseous fuel.

  • PDF

대기환경에서 광산란 미세먼지 측정기의 PM2.5 보정계수 산정 (Estimation of PM2.5 Correction Factor for Optical Particle Counter in Ambient Air)

  • 김종범;김단비;노수진;윤관훈;박덕신;이정주;김정호
    • 한국입자에어로졸학회지
    • /
    • 제16권2호
    • /
    • pp.49-59
    • /
    • 2020
  • Various devices have been developed to the measurement of particulate matter pollutants, and Optical Particle Counter (OPC) that can be easily and quickly measured is widely used lately. The measured value by OPC is converted to weight concentration using the correction factor (CF). The calculation of CF is very important to improve the reliability and accuracy of OPC. In this study, the CF calculation study of light scattering laser photometer (model 8533, TSI) was carried out to measure in the atmospheric environment using 2 gravimetric devices and 3 light scattering laser photometer devices. Regression analysis and Tukey tests were used to significance the test of measurement devices. Measurements were carried out twice. There was a comparative analysis of measurement data between light scattering laser photometer and gravimetric devices in 1st measurement, and then the Evaluation of PM2.5 concentration corrected by CF performed in 2nd measurement. As a result of the significance analysis between light scattering laser photometer and gravimetric devices, the correlation between the same method was high, but the correlation between different methods was low. CF was calculated as 0.4258 based on the measurement results, and it is a similar level to previous studies at home and abroad. It is expected that these results can be used as basic data in the future study for air quality measurement research using light scattering laser photometer. Also, in order to improve the accuracy of the measurement techniques and the development of technology in the atmospheric environment, CF calculation research should be conducted continuously.

Phantom에서 Laser Induced Fluorescence의 스펙트라에 관한 연구 (A Study on Spectra of Laser Induced Fluorescence in Phantom)

  • 김기준;성기천
    • 한국응용과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.329-335
    • /
    • 1999
  • The influences of fluorophor, scatterer, and absorber in turbid material by light scattering were interpreted for the scattered fluorescence intensity and wavelength. The molecular properties have been studied by laser induced fluorescence spectroscopy in phantom. It has been found that the effects of optical properties in scattering media could be investigated by the optical parameters(${\mu}_a$, ${\mu}_a$, ${\mu}_t$). Experimental and Monte Carlo Simulation method for modelling light transport in tissue was applied. The experimental results using a phantom were discussed and compared with those obtained through Monte Carlo Simulation. It may also aid in designing the best model for oil chemistry, medicine and application of medical engineering.

광 산란방법을 이용한 계면활성제 농도측정 (Measurement of Surfactant Concentration Using Light Scattering Method)

  • 조영현;조경현;정치섭
    • 대한환경공학회지
    • /
    • 제39권8호
    • /
    • pp.441-448
    • /
    • 2017
  • 본 연구에서는 미세기포를 산란체로 사용한 편광산란 측정법을 이용하여 수중 계면활성제의 농도를 측정하는 방법을 개발하였다. Mueller 요소 $M_{11}$은 계면활성제의 농도가 0 ppm부터 60 ppm 사이 영역에서 농도와 선형적인 비례관계를 가져 계면활성제 농도를 측정할 수 있는 유용한 파라메터로 사용될 수 있음을 알았다. 이 측정은 산란각이 150도, 소광비가 56.2 조건에서 가장 효과적 이였다. 이 연구 결과를 볼 때, 편광산란 측정법(EPLS)은 강이나 호수에서 수질을 실시간적으로 모니터하는데 있어 충분히 효과적인 수단으로 보인다.