• Title/Summary/Keyword: laser intensity

Search Result 787, Processing Time 0.03 seconds

Effects of Ultrasound, Laser and Exercises on Temporomandibular Joint Pain and Trismus Following Head and Neck Cancer

  • Elgohary, Hany Mohamed;Eladl, Hadaya Mosaad;Soliman, Ashraf Hassan;Soliman, Elsadat Saad
    • Annals of Rehabilitation Medicine
    • /
    • v.42 no.6
    • /
    • pp.846-853
    • /
    • 2018
  • Objective To compare the effects of low intensity ultrasound (LIUS), traditional exercise therapy (TET), low level laser therapy (LLLT) and TET on temporomandibular joint (TMJ) pain and trismus following recovery from head and neck cancer (HNC). Methods Sixty participants following, who had experienced HNC, were randomly allocated to three groups of 20 people each. Each group received different therapy. Group A received LIUS and TET; group B received LLLT and TET; while group C received TET. All 60 participants were evaluated under the visual analog scale (VAS), the University of Washington Quality of Life questionnaire (UW-QOL) and the Vernier caliper scale (VCS) at the beginning of the therapies and after 4 weeks. Results ANOVA test revealed significant improvements across all three groups with outcomes of p<0.05. The results of the UW-QOL questionnaire showed a significant difference between groups A, B and C in favor of group A (p<0.05). The VAS results showed a more improvement in group A as compared to group B (p<0.05), while there was no statistical difference between groups B and C (p>0.05). The VCS results showed more improvement for the individuals in group B as compared to those in group C (p<0.05), while there was minimal difference between groups A and B (p>0.05). Conclusion The LIUS and TET are more effective than LLLT and/or TET in reducing TMJ pain and trismus following HNC.

Characterization of AlN Thin Films Grown by Pulsed Laser Deposition with Various Nitrogen Partial Pressure (다양한 질소분압에서 펄스레이저법으로 성장된 AlN박막의 특성)

  • Chung, J.K.;Ha, T.K.
    • Transactions of Materials Processing
    • /
    • v.28 no.1
    • /
    • pp.43-48
    • /
    • 2019
  • Aluminum nitride (AlN) is used by the semiconductor industry, and is a compound that is required when manufacturing high thermal conductivity. The AlN films with c-axis orientation and thermal conductivity characteristic were deposited by using the Pulsed Laser Deposition (PLD). The AlN thin films were characterized by changing the deposition conditions. In particular, we have researched the AlN thin film deposited under optimal conditions for growth atmosphere. The epitaxial AlN films were grown on sapphire ($c-Al_2O_3$) single crystals by PLD with AlN target. The AlN films were deposited at a fixed temperature of $650^{\circ}C$, while conditions of nitrogen ($N_2$) pressure were varied between 0.1 mTorr and 10 mTorr. The quality of the AlN films was found to depend strongly on the $N_2$ partial pressure that was exerted during deposition. The X-ray diffraction studies revealed that the integrated intensity of the AlN (002) peak increases as a function the corresponding Full width at half maximum (FWHM) values decreases with lowering of the nitrogen partial pressure. We found that highly c-axis orientated AlN films can be deposited at a substrate temperature of $650^{\circ}C$ and a base pressure of $2{\times}10^{-7}Torr$ in the $N_2$ partial pressure of 0.1 mTorr. Also, it is noted that as the $N_2$ partial pressure decreased, the thermal conductivity increased.

Spark-induced Breakdown Spectroscopy System of Bulk Minerals Aimed at Planetary Analysis (스파크 유도 플라즈마 분광 시스템을 이용한 우주탐사용 암석 분석연구)

  • Jung, Jaehun;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.1013-1020
    • /
    • 2020
  • Spark-induced breakdown spectroscopy (SIBS) utilizes an electric spark to induce a strong plasma for collecting atomic emissions. This study analyses the potential for usinga compact SIBS instead of conventional laser-induced breakdown spectroscopy (LIBS) in discriminating rocks and soils for planetary missions. Targeting bulky solids using SIBS has not been successful in the past, and therefore a series of optimizations of electrode positioning and electrode materials were performed in this work. The limit of detection (LOD) was enhanced up to four times compared to when LIBS was used, showing a change from 78 to 20 ppm from LIBS to SIBS. Because of the higher energy of plasma generated, the signal intensity by SIBS was higher than LIBS in three orders of magnitude with the same spectrometer setup. Changing the electrode material and locating the optimum position of the electrodes were considered for optimizing the current SIBS setup being tested for samples of planetary origin.

Analysis of Single Crystal Silicon Solar Cell Doped by Using Atmospheric Pressure Plasma

  • Cho, I-Hyun;Yun, Myoung-Soo;Son, Chan-Hee;Jo, Tae-Hoon;Kim, Dong-Hae;Seo, Il-Won;Roh, Jun-Hyoung;Lee, Jin-Young;Jeon, Bu-Il;Choi, Eun-Ha;Cho, Guang-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.357-357
    • /
    • 2012
  • The doping process of the solar cell has been used by furnace or laser. But these equipment are so expensive as well as those need high maintenance costs and production costs. The atmospheric pressure plasma doping process can enable to the cost reduction. Moreover the atmospheric pressure plasma can do the selective doping, this means is that the atmospheric pressure plasma regulates the junction depth and doping concentration. In this study, we analysis the atmospheric pressure plasma doping compared to the conventional furnace doping. the single crystal silicon wafer doped with dopant forms a P-N junction by using the atmospheric pressure plasma. We use a P type wafer and it is doped by controlling the plasma process time and concentration of dopant and plasma intensity. We measure the wafer's doping concentration and depth by using Secondary Ion Mass Spectrometry (SIMS), and we use the Hall measurement because of investigating the carrier concentration and sheet resistance. We also analysis the composed element of the surface structure by using X-ray photoelectron spectroscopy (XPS), and we confirm the structure of the doped section by using Scanning electron microscope (SEM), we also generally grasp the carrier life time through using microwave detected photoconductive decay (u-PCD). As the result of experiment, we confirm that the electrical character of the atmospheric pressure plasma doping is similar with the electrical character of the conventional furnace doping.

  • PDF

Relationship between Transverse-Mode Behavior and Dynamic Characteristics in Multi-Mode VCSELs (다중모드 VCSEL의 모드 특성과 동특성 사이의 관계)

  • Kim Bong-Seok;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.19-26
    • /
    • 2005
  • We have studied the relationship between static mode behavior and dynamic characteristics of multiple transverse-mode VCSELs by measuring the modal L-I and I-V characteristics. Dependence of the resonance frequencies of RIN (relative intensity noise) spectra on the injection current can be understood by modal L-I characteristics and mode-coupling effects. Each transverse mode behaves as an independent diode laser with the different threshold current in large active-area VCSELs, and the multiple-step turn-on is observed when step-current input is applied. This multiple-step turn-on is a result of different turn-on delay times of the transverse modes. Since the multiple-step turn-on increases the rise-time significantly, the wide active-area VCSELs are not suitable for high-speed optical transmitters unless the input current is adjusted for single transverse-mode operation.

Study of Acoustic Streaming at Resonance by Longitudinal Ultrasonic Vibration Using Particle Imaging Velocimetry (입자 영상 유속계를 이용한 초음파 수직진동에 의해 유도된 공진상태에서의 음향유동에 관한 연구)

  • 노병국;이동렬
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.340-352
    • /
    • 2004
  • Acoustic streaming induced by the microscopic longitudinal ultrasonic vibration at 28.5 ㎑ is visualized between the quiescent glass plate and ultrasonic vibrator by particle imaging velocimetry(PIV) using laser. To investigate the augmentation of air flow velocity of acoustic streaming. the velocity variations of air streaming between the stationary plate and ultrasonic vibrator are measured in real-time. It is experimentally investigated that the magnitude of the acoustic streaming dependent upon the gap between the ultrasonic vibrator and stationary p1ate results in the variations of the average velocity fields as a outcome of the bulk air flow caused by the ultrasonic vibration. In addition. maximum acoustic streaming velocity exists at resonant gap. 18mm that is one of the resonant gaps (H=18, 24, 30, 36㎜) at which resonance occurs. The variation of the local maximum turbulent intensity with axial direction appear to reveal the value of 8%∼70% dependent upon the gap between the quiescent glass plate and ultrasonic vibrator. Shearstress is also maximized at the center region of the vibrator and the vorticity is also maximum and minimum in the neighborhood of the center of the vibrator at which the local maximum turbulent intensity and shear stress exist.

Effects of Fiber Wall Thickness on Paper Properties Using CLSM (CLSM을 이용한 고해과정 중 섬유벽 두께 변화의 종이 특성 영향 분석)

  • 김서환;박종문;김철환
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • Refining in papermaking plays an important role in changing fiber properties as well as paper properties. The major effects of refining on pulp fibers are internal and external fibrillation, fiber shortening, and fines formation. Many workers showed that internal fibrillation of the primary refining effects was most influential in improving paper properties. In particular, refining produces separation of fiber walls into several lamellae, thus causing fiber wall swelling with water penetration. This leads to the increase of fiber flexibility and of fiber-to-fiber contact during drying. If the fibers are very flexible, they will be drawn into close contact with each other by the force of surface tension as the water is removed during the drainage process and drying stages. In order to study the effect of fiber wall delamination on paper properties, cross-sectional image of fibers in a natural condition had to be generated without distortion. Finally, it was well recognized that confocal laser scanning microscope (CLSM) could be one of the most efficient tool for creating and quantifying fiber wall delamination in combination with image analysis technique. In this study, the CLSM could be used not only to observe morphological features of transverse views of swollen fibers refined under low and high intensity, but also to investigate the sequence of fiber wall delamination and fiber wall breakage. From the CLSM images, increasing the specific energy or refining decreased the degree of fiber collapse, fiber cross-sectional area, fiber wall thickness and lumen area. High intensity refining produced more external fibrillation.

  • PDF

Characteristics of the Polarization Dependence Holographic Diffraction Efficiency using the $MgF_{2}/As_{40}Ge_{10}Se_{15}S_{35}$ Multi-Layer ($MgF_{2}/As_{40}Ge_{10}Se_{15}S_{35}$ 다층박막에서 편광상태에 따른 회절효율 특성)

  • Lee, Jung-Tae;Yeo, Cheol-Ho;Shin, Kyung;Lee, Ki-Nam;Kim, Jong-Bin;Chung, Hong-Bay
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.127-130
    • /
    • 2003
  • We have carried out two-beam interference experiment to form holographic grating on amorphous $As_{40}Ge_{10}Se_{15}S_{35}$ single-laver, $MgF_{2}/As_{40}Ge_{10}Se_{15}S_{35}$ muliti-layer. In this study holographic grating formed using He-Ne laser(632.8nm) under different polarization state(intensity, phase polarization holography). The diffraction efficiency was obtained by first order intensity. The maximum diffraction efficiency of $As_{40}Ge_{10}Se_{15}S_{35}$ single-laver was 0.8% and The maximum diffraction efficiency of $MgF_{2}/As_{40}Ge_{10}Se_{15}S_{35}$ multi-layer(multi-layer I, multi-layer II) were 1.4% and 3.1%.

  • PDF

Feasibility Study of a Custom-made Film for End-to-End Quality Assurance Test of Robotic Intensity Modulated Radiation Therapy System

  • Kim, Juhye;Park, Kwangwoo;Yoon, Jeongmin;Lee, Eungman;Cho, Samju;Ahn, Sohyun;Park, Jeongeun;Choi, Wonhoon;Lee, Ho
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.189-195
    • /
    • 2016
  • This paper aims to verify the clinical feasibility of a custom-made film created by a laser cutting tool for End-to-End (E2E) quality assurance in robotic intensity modulated radiation therapy system. The custom-made film was fabricated from the Gafchromic EBT3 film with the size of $8^{{\prime}{\prime}}{\times}10^{{\prime}{\prime}}$ using a drawing that is identical to the shape and scale of the original E2E film. The drawing was created by using a computer aided design program with the image file, which is obtained by scanning original E2E film. Beam delivery and evaluations were respectively performed with the original film and the custom-made film using fixed-cone collimator on three tracking modes: 6D skull (6DS), Xsight spine (XS), and Xsight lung (XL). The differences between total targeting errors of the original and custom-made films were recorded as 0.17 mm, 0.3 mm, and 0.17 mm at 6DS, XS, and XL tracking modes, respectively. This indicates that the custom-made film could yield nearly equivalent results to those of the original E2E film, given the uncertainties caused by distortions during film scanning and vibrations associated with film cutting. By confirming the clinical feasibility of a custom-made film for E2E testing, it can be expected that economic efficiency of the testing will increase accordingly.

Experimental Investigation of Horizontal Buoyant Discharges from a Rosette-type Riser Using LIF System

  • Kwon, Seok Jae;Seo, Il Won;Kim, Ho Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.463-467
    • /
    • 2004
  • Rosette-type diffusers with four-ports per riser are constructed in relatively shallow water in Korea. However, the trajectorial bending phenomena due to lower-pressure inside the surrounded buoyant jets on the riser was not considered in most models and was not observed without any experimental results. The buoyant jet behavior affected by the bending effect where there have been growing interests need to be verified experimentally and need to be preceded in the analysis of the characteristics of the buoyant jets oil a riser. The hydraulic model experiments have been carried out to investigate the characteristics of the behavior of horizontal buoyant jets discharged from a Rosette-type riser with four ports as well as single port over a certain range of the experimental conditions including initial momentum and initial buoyancy using LIF (Laser Induced Fluorescence) system to obtain concentration fields. The intensity of the fluorescent light in each pixel on the images obtained from LIF system with the tracer of Rhodamine H was converted to the local dye concentration with a set of calibration procedures to account for the non-uniform distribution of light intensity and the attenuation of light energy by water medium. The experimental results shows that the trajectories from Your ports tend to bend more and more to the inner side with the increase of the densimetric Froude number while the buoyant jet from a single port rises up without any bending phenomena. The previous models, VISJET and Seo et al. (2002), do not simulate the trajectories well except the region before the bending section. This study will focus on the analysis of the behavior of the buoyant jets for mainly a Rosette-type riser by conducting hydraulic model experiments using LIF system.

  • PDF