• Title/Summary/Keyword: laser coordinate system

Search Result 75, Processing Time 0.029 seconds

A Study on Measuring Vehicle Length Using Laser Rangefinder (레이저 거리계를 이용한 차량 전장 측정 방법에 관한 연구)

  • Ryu, In-Hwan;Kwon, Jang-Woo;Lee, Sang-Min
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.66-76
    • /
    • 2016
  • Determination of type of a vehicle is being used in various areas such as collecting tolls, collecting statistical traffic data and traffic prognosis. Because most of the vehicle type classification systems depend on vehicle length indirectly or directly, highly reliable automatic vehicle length measurement system is crucial for them. This study makes use of a pencil beam laser rangemeter and devises a mechanical device which rotates the laser rangemeter. The implemented system measures the range between a point and the laser rangemeter then indicates it as a spherical coordinate. We obtain several silhouettes of cross section of the vehicle, the rate of change of the silhouettes, signs of the rates then squares the rates to apply cell averaging constant false alarm rate (CA-CFAR) technique to find out where the border is between the vehicle and the background. Using the border and trigonometry, we calculated the length of the vehicle and confirmed that the calculated vehicle length is about 94% of actual length.

A study of facial soft tissue of Korean adults with normal occlusion using a three-dimensional laser scanner (3차원 레이저 스캐너를 이용한 한국 성인 정상교합자의 안면 연조직에 대한 연구)

  • Baik, Hyoung-Seon;Jeon, Jai-Min;Lee, Hwa-Jin
    • The korean journal of orthodontics
    • /
    • v.36 no.1 s.114
    • /
    • pp.14-29
    • /
    • 2006
  • Developments in computer technology have made possible the 3-dimensional (3-D) evaluation of hard and soft tissues in orthodontic diagnosis, treatment planning and post-treatment results. In this study, Korean adults with normal occlusion (male 30, female 30) were scanned by a 3-D laser scanner, then 3-D facial images formed by the Rapidform 2004 program (Inus Technology Inc., Seoul, Korea.). Reference planes in the facial soft tissue 3-D images were established and a 3-D coordinate system (X axis-left/right, Y axis-superior/inferior, Z axis-anterior/posterior) was established by using the soft tissue nasion as the zero point. Twenty-nine measurement points were established on the 3-D image and 43 linear measurements, 8 angular measurements, 29 linear distance ratios were obtained. The results are as follows; there were significant differences between males and females in the nasofrontal angle $(male:\;142^{\circ},\;female:\;147^{\circ})$ and transverse nasal prominence $(male:\;112^{\circ},\;female:\;116^{\circ})$ (p<0.05). The transverse upper lip prominence was $107^{\circ}$ in males, $106^{\circ}$ in females and the transverse mandibular prominence was $76^{\circ}$ in both males and females. Li-Me' was 0.4 times the length of Go-Me'(mandibular body length) and the mouth height was also 0.4 times the width of the mouth width. The linear distance ratio from the coronal reference plane of FT, Zy, Pn, ULPm, Li, Me' was -1/-1/1/0.5/0.5/-0.6 respectively. The 3-D facial model of Korean adults with normal occlusion were be constructed using coordinate values and linear measurement values. These data may be used as a reference in 3-D diagnosis and treatment planning for malocclusion and dentofacial deformity patients and applied for 3-D analysis of facial soft tissue changes before and after orthodontic treatment and orthognathic surgery.

Development of the 3D Rail Profile Reconstruction Method Improving the Measurement Accuracy of Railway Abrasion (레일 마모도의 측정 정밀도 향상을 위한 3차원 레일 프로파일 재구성 기법 개발)

  • Ahn, Sung-Hyuk;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.533-539
    • /
    • 2010
  • The The contactless railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be matched with the cross section of rail, exactly. But, the conventional railway abrasion measurement system is required the post image processing with a camera model and a perspective transform for the exact mapping between the cross section of rail and the coordinate data extracted from a line laser region or the raw image obtained from a camera because the image captured from the camera has an oblique viewpoint. So, the measured rail profile data had limits to the measurement accuracy because of a discontinuity point. In this Paper, we propose the 3D rail profile reconstruction method to increase the accuracy of the railway abrasion measurement system applying the modified camera model and perspective transform to the image obtained from the bidirectional rail.

  • PDF

Co-Registration of Aerial Photos, ALS Data and Digital Maps Using Linear Features (선형기하보정 요소를 이용한 항공레이저측량 자료, 항공사진, 대축척 수치지도의 기하보정에 관한 연구)

  • Lee, Jae-Bin;Yu, Ki-Yun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.37-44
    • /
    • 2006
  • To use surveying data obtained from different sensors and different techniques, it is a pre-requite step that register them in a common coordinate system. For this purpose, we developed methodologies to register airborne photos, ALS (Airborne Laser Scanning) data and digital maps. To achieve this, conjugate features from these data should be extracted in advance. In this study, linear features are chosen as conjugate features. Based on such a selection strategy, a simple and robust algorithm is proposed for extracting such features from ALS data. Then, to register them, observation equations are established from similarity measurements of the extracted features and the results was evaluated statistically. The results clearly demonstrate that the proposed algorithms are appropriate to register these data.

  • PDF

Characteristics of Rotor Blade Tip Vortices with Spanwise Slots (스팬방향 슬롯을 가지는 회전익 끝와류의 특성)

  • Chung, Woon-Jin;Han, Yong-Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1343-1350
    • /
    • 2000
  • The evolutionary structure of tip vortices has been investigated with a two-dimensional LDV system for a plain and a slotted blade, respectively. To analyze the effect of slots which bypasses a part of main stream into the tip face, velocity profiles, vortex sizes, their displacements and turbulence intensities during one revolution of the rotor were measured by the phase averaging process. For the comparison of circumferential velocity components of the plain blade and the slotted blade, the peak values of the slotted blade were lower than those of the plain blade, and axial velocity components of the slotted blade were considerably larger than those of the plain blade. The slotted rotor blade enlarged the core size and made the vortex delayed compared with those of the plain blade at the same wake ages. Turbulence profiles had peaks inside the core radii and decayed gradually in the radial direction of vortex coordinate. Also, using a quasi 3-D LDV measurement technique the budget of turbulence kinetic energy was analyzed in radial direction of the vortex core.

A Study on Improvement of Accuracy using Geometry Information in Reverse Engineering of Injection Molding Parts (사출성형품의 역공학에서 Geometry 정보를 이용한 정밀도 향상에 관한 연구)

  • Kim, Yeon-Sul;Lee, Hui-Gwan;Hwang, Geum-Jong;Gong, Yeong-Sik;Yang, Gyun-Ui
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.99-106
    • /
    • 2002
  • This paper proposes an error compensation method that improves accuracy with geometry information of injection molding parts. Geometric information can give an improved accuracy in reverse engineering. Measuring data can not lead to get accurate geometric model, including errors of physical parts and measuring machines. Measuring data include errors which can be classified into two types. One is molding error in product, the other is measuring error. Measuring error includes optical error of laser scanner, deformation by probe forces of CMM and machine error. It is important to compensate these in reverse engineering. Least square method (LSM) provides the cloud data with a geometry compensation, improving accuracy of geometry. Also, the functional shape of a part and design concept can be reconstructed by error compensation using geometry information.

Analysis of overlap ratio for registration accuracy improvement of 3D point cloud data at construction sites (건설현장 3차원 점군 데이터 정합 정확성 향상을 위한 중첩비율 분석)

  • Park, Su-Yeul;Kim, Seok
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • Comparing to general scanning data, the 3D digital map for large construction sites and complex buildings consists of millions of points. The large construction site needs to be scanned multiple times by drone photogrammetry or terrestrial laser scanner (TLS) survey. The scanned point cloud data are required to be registrated with high resolution and high point density. Unlike the registration of 2D data, the matrix of translation and rotation are used for registration of 3D point cloud data. Archiving high accuracy with 3D point cloud data is not easy due to 3D Cartesian coordinate system. Therefore, in this study, iterative closest point (ICP) registration method for improve accuracy of 3D digital map was employed by different overlap ratio on 3D digital maps. This study conducted the accuracy test using different overlap ratios of two digital maps from 10% to 100%. The results of the accuracy test presented the optimal overlap ratios for an ICP registration method on digital maps.

A Study on Utilization of GNSS and Spatial Image for River Site Decision Supporting (하천 현장업무 의사지원을 위한 GNSS와 공간영상 활용방안에 관한 연구)

  • Park, Hyeon-Cheol;Choung, Yun-Jae;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.118-129
    • /
    • 2011
  • This Study has developed the information system of the rivers based on 3D image GIS by converging the latest information technology of GIS(Geographic Information System), RS(Remote Sensing), GNSS(Global Navigation Satellite System), aerial laser survey(LiDAR) with real time network technology in order to understand the current situation of all the four major rivers and support the administrative management system. The said information system acquires the high resolution aerial photographs of 25cm, aerial laser survey and water depth surveying data to express precise space information on the whole Youngsan River which is the leading project site out of the four river sites. Monitoring the site is made available on the transporting means such as a helicopter, boat or a bus in connection with locational coordinate tracking skill for the moving objects in real time using GNSS. It makes monitoring all the information on the four river job sites available at a glance, which can obtain the reliability of the people to such vast areas along with enhancing the recognition of the people by publicity of four Rivers Revitalizing Project and reports thereof.

Direct Measurement of Distortion of Optical System of Lithography (노광 광학계의 왜곡수차 측정에 관한 연구)

  • Joo, WonDon;Lee, JiHoon;Chae, SungMin;Kim, HyeJung;Jung, Mee Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.3
    • /
    • pp.97-102
    • /
    • 2012
  • In general, one of the methods used to measure distortion is to use the full image of the regular pattern. However, because of low accuracy, this method is mainly used for an optical system such as a camera.. In order to measure distortion with high accuracy less than 1um, one can use the method of measuring the exact position of a mask image. In this case, a high accuracy stage with a laser encoder is required. In this paper, we investigate measurement of the distortion of high accuracy with a simple manual stage. The main idea is that we split and measure the mask image with the overlapping area by using CCD or CMOS, and then we get an exact position of the mask image by integrating the adjacent split images. We use the Canny Edge Detection method to get the position information of the mask image and we researched the process to exactly calculate distortion by using coordinate transformations and a least square method.

A Study of an OMM System for Machined Spherical form Using the Volumetric Error Calibration of Machining Center (머시닝센터의 체적오차 보상을 통한 구면 가공형상 측정 OMM시스템 연구)

  • Kim, Sung-Chung;Kim, Ok-Hyun;Lee, Eung-Suk;Oh, Chang-Jin;Lee, Chan-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.98-105
    • /
    • 2001
  • The machining accuracy is affected by geometric, volumetric errors of the machine tools. To improve the product quality, we need to enhance the machining accuracy of the machine tools. To this point of view, measurement and inspection of finished part as error analysis of machine tools ahas been studied for last several decades. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the spherical surface manufacturing by modeling and compensation of volumetric error of the machine tool, 4) the system development of OMM without detaching work piece from a bed of machine tool after working, 5) the generation of the finished part profile by OMM. Furthermore, the output of OMM is compared with that of CMM, and verified the feasibility of the measurement system.

  • PDF