• Title/Summary/Keyword: laser beam

Search Result 2,058, Processing Time 0.025 seconds

Impact of the Spectral Linewidth of a Pseudorandom Binary Sequence (PRBS)-Modulated Laser on Stimulated Brillouin Scattering and Beam Quality

  • Aeri Jung;Sanggwon Song;Kwang Hyun Lee;Jung Hwan Lee;Kyunghwan Oh
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.665-672
    • /
    • 2023
  • This study focuses on investigating the impact of the spectral linewidth of a seed laser in a master-oscillator power amplifier (MOPA) configuration on stimulated Brillouin scattering and the beam quality of the output diffracted by a grating. To conduct the study, a distributed feedback (DFB) laser is modulated in a pseudorandom binary sequence (PRBS) and amplified by a two-stage Yb-doped fiber amplifier to achieve an output power of over 1 kW. The spectral linewidth of the seed laser is systematically varied from 1 to 12 GHz in the frequency domain by varying the PRBS modulation parameters. The experimental results reveal a tradeoff between suppressing stimulated Brillouin scattering and enhancing beam quality with increased spectral linewidth. Therefore, the study provides valuable insights into optimizing spectral beam combining to achieve high beam quality and scalable power upgrade in fiber lasers.

Tool Fracture Detection by End Mill Deflection (엔드밀 변위에 의한 공구파손검출)

  • 맹민재
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.100-107
    • /
    • 1999
  • End milling experiments are conducted to investigate characteristics of laser beam signals due to tool fracture. The laser beam signals are obtained with adapt focusing of tool. Tool states are identified wit h scanning electron microscopy and optical microscopy. It is demonstrated that the laser beam signals provide reliable informations about the cutting processes and tool states. Moreover, tool fracture can be detected successfully using coefficient of variation.

  • PDF

Laser Beam Welding of Tri-Metal (Tri-Metal의 레이저 용접)

  • Han, Yoo-Hee;Seo, Jung
    • Proceedings of the KWS Conference
    • /
    • 1994.05a
    • /
    • pp.157-160
    • /
    • 1994
  • Characteristics of laterally bonded tri-metal sheets (stainless steel/Invar/stainless steel) fabricated by laser beam welding are compared to those of samples by Imphy and Hitachi Co-operations. Residual stess of tri-metal is calculated by using of the hole-drilling stain gauge method. The aging effect of stainless steel strip on welding is also discussed. In addition to, a numerical approach for laser beam welding is tried. Finally, laser beam welding system of tri-metal can be designed on th basis of experimental and theoretical results.

  • PDF

Effects of Laser Parameters and Workpiece Conditions on Cutting Characteristics of Solid Wood and Wood-based Panel(I) - Cutting Depths and Kerf Widths - (레이저변수(變數)와 피삭재조건(被削材條件)이 목재(木材) 및 목질(木質)보드의 절삭특성(切削特性)에 미치는 영향(影響)(I) - 절삭(切削)깊이와 절삭폭(切削幅) -)

  • Sim, Jae-Hyeon;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.75-91
    • /
    • 1997
  • Laser cutting tests were conducted to investigate the laser cutting characteristics of solid woods such as 25mm-thick white oak(Quercus acutissima) and maple(Acer mono), and wood-based panels such as 15mm-thick medium density fiberboard and particleboard. Test variables were laser power, cutting speed, grain direction, and moisture content. Cutting depths, kerf widths and the maximum cutting speed were measured. Cutting depths were increased as focus of laser beam was moving from above the workpiece to on the surface of workpiece, and also to below the workpiece. Kerf widths were decreased as focus of laser beam was moving from above the workpiece to on the surface of workpiece, but were increased as focus of laser beam was moving from on the surface of workpiece to below the workpiece. Minimum kerf widths were obtained when focus of laser beam was positioned on the surface of workpiece. Cutting depths and kerf widths were decreased with increase in moisture content, and cutting depths and kerf widths of more dense white oak were smaller than those of maple. And also cutting depths and kerf widths of particleboard were smaller than those of medium density fiberboard.

  • PDF

A Study on the Effect of Beam Mode on the Size of Hardened Zone in Laser Surface Hardening (레이저 표면경화처리에서 빔의 형태가 경화층 크기에 미치는 영향에 관한 연구)

  • Kim, J.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.64-72
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaussian mode of beam. Then the model for rectagular beam was used for the predicition of the size of hardened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters such as beam mode, beam size, and traverse speed.

  • PDF

Thermal Damage Characterization of Silicon Wafer Subjected to CW Laser Beam (CW 레이저 조사에 의한 실리콘 웨이퍼의 손상 평가)

  • Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young;Shin, Wan-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1241-1248
    • /
    • 2012
  • The objective of this study is to evaluate the thermal damage characterization of a silicon wafer subjected to a CW laser beam. The variation in temperature and stress during laser beam irradiation has been predicted using a three-dimensional numerical model. The simulation results indicate that the specimen might crack when a 93-$W/cm^2$ laser beam is irradiated on the silicon wafer, and surface melting can occur when a 186-$W/cm^2$ laser beam is irradiated on the silicon wafer. In experiments, straight cracks in the [110] direction were observed for a laser irradiance exceeding 102 $W/cm^2$. Furthermore, surface melting was observed for a laser irradiance exceeding 140 $W/cm^2$. The irradiance for surface melting is less than that in the simulation results because multiple reflections and absorption of the laser beam might occur on the surface cracks, increasing the absorbance of the laser beam.

Increased Efficiency of Long-distance Optical Energy Transmission Based on Super-Gaussian (수퍼 가우시안 빔을 이용한 레이저 전력 전송 효율 개선)

  • Jeongkyun Na;Byungho Kim;Changsu Jun;Hyesun Cha;Yoonchan Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.150-156
    • /
    • 2024
  • One of the key factors in research regarding long-distance laser beam propagation, as in free-space optical communication or laser power transmission, is the transmission efficiency of the laser beam. As a way to improve efficiency, we perform extensive numerical simulations of the effect of modifying the laser beam's profile, especially replacing the fundamental Gaussian beam with a super-Gaussian beam. Numerical simulations of the transmitted power in the ideal diffraction-limited beam diameter determined by the optical system of the transmitter, after about 1-km propagation, reveal that the second-order super-Gaussian beam can yield superior performance to that of the fundamental Gaussian beam, in both single-channel and coherently combined multi-channel laser transmitters. The improvement of the transmission efficiency for a 1-km propagation distance when using a second-order super-Gaussian beam, in comparison with a fundamental Gaussian beam, is estimated at over 1.2% in the singlechannel laser transmitter, and over 4.2% and over 4.6% in coherently combined 3- and 7-channel laser transmitters, respectively. For a range of the propagation distance varying from 750 to 1,250 m, the improvement in transmission efficiency by use of the second-order super-Gaussian beam is estimated at over 1.2% in the single-channel laser transmitter, and over 4.1% and over 4.0% in the coherently combined 3- and 7-channel laser transmitters, respectively. These simulation results will pave the way for future advances in the generation of higher-order super-Gaussian beams and the development of long-distance optical energy-transfer technology.

Development of CO Laser-Arc Hybrid Welding Process

  • Lee, Se-Hwan
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.15-20
    • /
    • 2002
  • The principal obstacle to selection of a laser processing method in production is its relatively high equipment cost and the natural unwillingness of production supervision to try something new until it is thoroughly proven. The major objective of this work is focused on the combined features of gas tungsten arc and a low-power cold laser beam. In this work, the laser beam from a 7 watts carbon monoxide laser was combined with electrical discharges from a short-pulsed capacitive discharge GTA welding power supply. When the low power CO laser beam passes through a special composition shielding gas, the CO molecules in the gas absorbs the radiation, and ionizes through a process blown as non-equilibrium, vibration-vibration pumping. The resulting laser-induced plasma(LIP) was positioned between various configurations of electrodes. The high-voltage impulse applied to the electrodes forced rapid electrical breakdown between the electrodes. Electrical discharges between tungsten electrodes and aluminum sheet specimens followed the ionized path provided by LIP. The result was well-focused melted spots.

  • PDF

Theoretical analysis on the maximum volume ablation rate for copper ablation with a 515nm picosecond laser (515nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최대 가공율에 대한 이론적 분석)

  • Shin, Dongsig;Cho, Yongkwon;Sohn, Hyonkee;Suh, Jeong
    • Laser Solutions
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • Picosecond lasers are a very effective tool for micromachining metals, especially when high accuracy, high surface roughness and no heat affected zone are required. However, low productivity has been a limit to broadening the spectrum of their industrial applications. Recently it was reported that in the micromachining of copper with a 1064nm picosecond laser, there exist the optimal pulse energy and repetition rate to achieve the maximum volume ablation rate. In this paper, we used a 515nm picosecond laser, which is more efficient for micromachining copper in terms of laser energy absorption, to obtain its optimal pulse energy and repetition rate. Theoretical analysis based on the experimental data on copper ablation showed that using a 515nm picosecond laser instead of a 1064nm picosecond laser is more favorable in that the calculated threshold fluence is 75% lower and optical penetration depth is 50% deeper.

  • PDF

Method of Beam Alignment with the Rotation Axis for Laser Fabrication of Micro Cylindrical Structures (레이저를 이용한 미세 원통 구조물 제조를 위한 빔과 회전축 정렬 방법)

  • 정성진;정성호;이선규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.1056-1060
    • /
    • 1997
  • An optical technique to align the laser beam with the rotation axis of a cylindrical microstructure is developed for laser microfabrication. The sample surface is first set normal to the rotation axis by applying a simple reflection law of geometrical optics and then the laser beam is aligned with the rotation axis using translation stages with quadrant photodiodes. Principle and the configuration of the alignment technique are described. An application of the present technique to laser microstereolithography showed that it could be effectively used for fabrication of micro cylindrical structures.

  • PDF