• Title/Summary/Keyword: laser beam

Search Result 2,056, Processing Time 0.037 seconds

An experimental study on the characteristic times of viscoelastic fluids by falling ball viscometer (낙구식 점도계를 이용한 점탄성 유체의 특성시간에 관한 실험적 연구)

  • 전찬열;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.241-250
    • /
    • 1990
  • Characteristic relaxation time and characteristic diffusion time of viscoelastic fluids are determined experimentally by measuring the zero-shear-rate viscosity by falling ball viscometer and the infinite-shear-rate viscosity by capillary tube viscometer. Fluids used in experiments are aqueous solutions of polyacrylamide Separan AP-273 and the polymer concentrations range from 300 to 2000 wppm. A newly designed laser beam and timer system is employed to overcome the difficulty in measuring terminal velocities of the low concentration solutions. Ball removal device is prepared to remove the dropped ball from the bottom of cylinder without disturbing the testing fluid. In order to measure the zero-shear-rate viscosity, densities of hollow aluminium balls are adjusted very close to the densities of testing fluids. Characteristic diffusion time, which is ball viscometer. However, terminal velocity of a needle by falling ball viscometer is not affected by the time interval of dropping needles and characteristic diffusion time is not measured with a dropping needle. Powell-Eyring model predicts the highest values of the characteristic relaxation times among models used for heat transfer experimental works for a given polymer solution. As degradation of a polymer solution continues, the zero-shear-rate viscosity decreases more seriously than the infinite-shear-rate viscosity. Characteristic relaxation times of polymer solutions decreases as degradation continues.

Flow characteristics of supersonic twin-fluid atomizers (초음속 2유체 분무노즐의 유동 특성)

  • Park, Byeong-Gyu;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2267-2276
    • /
    • 1996
  • Twin-fluid atomization has been widely used in combustors and process industries because of its high performance and simple structure. Flow visualization and pressure measurements were conducted to investigate the effects of gas flow in twin-fluid atomization. Schlieren photographs showed that changes in atomizing gas pressure, altered the wave patterns, and the lengths of both recitrculating toroid (impinging stangnation point) nad supersonic flow region in the jet. A longer supersonic wave pattern like net-shape wqas observed as atomizing gas pressure increased. The disintegration phenomenon of liquid delivery tube. The variation of spray angles with gas pressures were obtained by visualization using laser sheet beam. Suction pressuresat the nozzle orifice exit and recirculating region are shown to be used to estimate the stable atomization condition of a twin-fluid atomizer.

A Study on Generation and Operation of Dynamic Pattern at Micro-stereolithography using $DMD^{TM}$ ($DMD^{TM}$를 이용한 마이크로 광 조형 시스템에서 다이나믹 패턴 생성 및 구동에 관한 연구)

  • Kim H.S.;Choi J.W.;Ha Y.M.;Kwon B.H.;Won M.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1214-1218
    • /
    • 2005
  • As demands for precision parts are increased, existing methods to fabricate them such as MEMS, LIGA technology have the technical limitations like high precision, high functionality and ultra miniaturization. A micro-stereolithography technology based on $DMD^{TM}$(Digital Micromirror Device) can meet these demands. In this technology, STL file is the standard format as the same of conventional rapid prototyping system, and 3D part is fabricated by stacking layers that are sliced as 2D section from STL file. Whereas in conventional method, the resin surface is cured as scanning laser beam spot according to the section shape, but in this research, we use integral process which enables to cure the resin surface at one time. In this paper, we deal with the dynamic pattern generation and $DMD^{TM}$ operation to fabricate micro structures. Firstly, we address effective slicing method of STL file, conversion to bitmap, and dynamic pattern generation. Secondly, we suggest $DMD^{TM}$ operation and optimal support manufacturing for $DMD^{TM}$ mounting. Thirdly, we examine the problems on continuous stacking layers, and their improvements in software aspects.

  • PDF

Development of Micro-stereolithography Technology using Metal Powder (금속 분말을 이용한 마이크로 광 조형 기술의 개발)

  • Lee J.W.;Lee I.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1155-1158
    • /
    • 2005
  • Micro-stereolithography is a newly proposed technology as a means that can fabricate a 3D micro structure of free form. It makes a 3D micro-structure by dividing the shape into many slices of relevant thickness along horizontal surfaces, hardening each layer of slice with a focused laser beam, and stacking them up to a desired shape. However, we do not anticipate the electric conductivity of the final product at the existing micro-stereolithography. The reason is that this technology uses polymer to make the product. Thus the new suspension which was mixed conventional photopolymer with metal powder was developed in this study. The developed suspensions were based on SL5180 which is commercialized resin and IMS03 that is made in our laboratory. And Triton X-100 was added at the suspension for getting the scattering effect and stabilizing effect. The layer recoating device was developed to be flat the mixed high viscosity suspension. A 3D micro structure was manufactured by using recoating system and micro-stereolithography system. The fabricated product was sintered to get the electric conductivity. After sintering, a pure copper product was made. In this study, new process was developed by making metal micro structure having an electric conductivity. This technology broadened the realm of the micro-stereolithography technology. And it will be applied to make the 3D micro structure of free form which has a high hardness and an electric conductivity in the near future.

  • PDF

$Cu_2ZnSnS_4$ Thin Film Absorber Synthesized by Chemical Bath Deposition for Solar Cell Applications

  • Arepalli, Vinaya Kumar;Kumar, Challa Kiran;Park, Nam-Kyu;Nang, Lam Van;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • New photovoltaic (PV) materials and manufacturing approaches are needed for meeting the demand for lower-cost solar cells. The prototypal thin-film photovoltaic absorbers (CdTe and $Cu(In,Ga)Se_2$) can achieve solar conversion efficiencies of up to 20% and are now commercially available, but the presence of toxic (Cd,Se) and expensive elemental components (In, Te) is a real issue as the demand for photovoltaics rapidly increases. To overcome these limitations, there has been substantial interest in developing viable alternative materials, such as $Cu_2ZnSnS_4$ (CZTS) is an emerging solar absorber that is structurally similar to CIGS, but contains only earth abundant, non-toxic elements and has a near optimal direct band gap energy of 1.4~1.6 ev and a large absorption coefficient of ${\sim}10^4\;cm^{-1}$. The CZTS absorber layers are grown and investigated by various fabrication methods, such as thermal evaporation, e-beam evaporation with a post sulfurization, sputtering, non-vacuum sol-gel, pulsed laser, spray-pyrolysis method and electrodeposition technique. In the present work, we report an alternative method for large area deposition of CZTS thin films that is potentially high throughput and inexpensive when used to produce monolithically integrated solar panel modules. Specifically, we have developed an aqueous chemical approach based on chemical bath deposition (CBD) with a subsequent sulfurization heat treatment. Samples produced by our method were analyzed by scanning electron microscopy, X-ray diffraction, transmission electron microscopy, absorbance and photoluminescence. The results show that this inexpensive and relatively benign process produces thin films of CZTS exhibiting uniform composition, kesterite crystal structure, and good optical properties. A preliminary solar cell device was fabricated to demonstrate rectifying and photovoltaic behavior.

  • PDF

Experimental Investigations into the Precision Cutting of High-pressured Jet for Thin Multi-layered Material (다층박판재료의 초고압 젯 정밀가공에 대한 실험적 연구)

  • Park, Kang-Su;Bahk, Yeon-Kyeung;Lee, Jung-Han;Lee, Chae-Moon;Go, Jeung-Sang;Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.7
    • /
    • pp.44-50
    • /
    • 2009
  • High-pressured jetting is now widely used in the advanced cutting processes of polymers, metals, glass, ceramics and composite materials because of some advantages such as heatless and non-contacting cutting. Similarly to the focused laser beam machining, it is well known as a type of high-density energy processes. High-pressured jetting is going to be developed not only to minimize the cutting line width but also to achieve the short cutting time as soon as possible. However, the interaction behavior between a work piece and high-velocity abrasive particles during the high-pressured jet cutting makes the impact mechanism even more complicated. Conventional high-pressured jetting is still difficult to apply to precision cutting of micro-scaled thin work piece such as thin metal sheets, thin ceramic substrates, thin glass plates and TMM (Thin multi-layered materials). In this paper, we proposed the advanced high-pressured jetting technology by introducing a new abrasives supplying method and investigated the optimal process conditions of the cutting pressure, the cutting velocity and SOD (Standoff distance).

BST Thin Film Multi-Layer Capacitors

  • Choi, Woo Sung;Kang, Min-Gyu;Ju, Byeong-Kwon;Yoon, Seok-Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.319-319
    • /
    • 2013
  • Even though the fabrication methods of metal oxide based thin film capacitor have been well established such as RF sputtering, Sol-gel, metal organic chemical vapor deposition (MOCVD), ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD), an applicable capacitor of printed circuit board (PCB) has not realized yet by these methods. Barium Strontium Titanate (BST) and other high-k ceramic oxides are important materials used in integrated passive devices, multi-chip modules (MCM), high-density interconnect, and chip-scale packaging. Thin film multi-layer technology is strongly demanded for having high capacitance (120 nF/$mm^2$). In this study, we suggest novel multi-layer thin film capacitor design and fabrication technology utilized by plasma assisted deposition and photolithography processes. Ba0.6Sr0.4TiO3 (BST) was used for the dielectric material since it has high dielectric constant and low dielectric loss. 5-layered BST and Pt thin films with multi-layer sandwich structures were formed on Pt/Ti/$SiO_2$/Si substrate by RF-magnetron sputtering and DC-sputtering. Pt electrodes and BST layers were patterned to reveal internal electrodes by photolithography. SiO2 passivation layer was deposited by plasma-enhanced chemical vapor deposition (PE-CVD). The passivation layer plays an important role to prevent short connection between the electrodes. It was patterned to create holes for the connection between internal electrodes and external electrodes by reactive-ion etching (RIE). External contact pads were formed by Pt electrodes. The microstructure and dielectric characteristics of the capacitors were investigated by scanning electron microscopy (SEM) and impedance analyzer, respectively. In conclusion, the 0402 sized thin film multi-layer capacitors have been demonstrated, which have capacitance of 10 nF. They are expected to be used for decoupling purpose and have been fabricated with high yield.

  • PDF

Characteristics of fiber-optic current sensors using perpendicular coil formers (수직원형틀을 이용한 광섬유전류센서의 동작특성)

  • 이명래;이용희;김만식
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.4
    • /
    • pp.419-427
    • /
    • 1996
  • Thermally-stabilized fiber-optic current sensors are proposed and demonstrated. The sensor head is made of two coil formers combined perpendicularly. In this sensor head, bending-induced birefringences can be reduced to the level much smaller than those of the single former type because the eigen-axes of the two perpendicular coil formers are made orthogonal to each other. Moreover, thermal variation of the birefringence is also expected to be minimized by the orthogonality of the two polarization eigen-axes. We changed the temperature slowly in the range of 20~45$^{\circ}C$ during 100 minutes. The overall linearity of the sensor is better than 1.2% in the range of 0~1000A. The long-term fluctuation of the sensor is less than 1% when measured for 3 hours at 500A and room temperature. Two orthogonally-polarized laser diodes are combined together to make the incident beam unpolarized. In the signal processing, the signals are separated by two parts and normalized respectively, which minimize the efects of optical fluctuations coming from sources, connectors, etc.

  • PDF

Electrical Characteristics of 808 nm InAlAs Quantum Dot Laser Diode Structure (808 nm InAlAs 양자점 레이저 다이오드 구조의 전기적 특성)

  • Seo, Yu-Jeong;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.338-338
    • /
    • 2010
  • 지난 20여년 동안 반도체 레이저 다이오드는 주로 CD (DVD) 픽업용 (파장: 640 nm 이하) 및 통신용 (파장 1550 nm) 광원 분야에서 집중적으로 개발되어 왔다. 그러나 기술의 개발과 더불어 파장조절이 비교적 자유로워지고 광출력이 증대 되면서 기존의 레이저 고유의 영역까지 그 응용분야기 확대되고 있고, 이에 따라 고출력 반도체 레이저 다이오드의 시장 규모도 꾸준히 증가되고 있는 상황이다. 고출력 반도체 레이저 다이오드는 발진 파장 및 광출력에 따라 다양한 분야에 응용되고 있으며, 특히 발진파장이 808 nm 인 고출력 레이저 다이오드의 경우 재료가공, 펌핑용 광원 (DPSSL, 광섬유 레이저), 의료, 피부미용 (점 제거), 레이저 다이오드 디스플레이 등 가장 다양한 응용분야를 가진 광원 중의 하나라고 할 수 있다. MBE(Molecular Beam Epitaxy)로 성장된 InAlAs 에피층 (epi-layer)을 사용하여 고출력을 갚는 레이저 다이오드를 제작함에 있어서, 에피층은 결함 (defect)이 없는 우수한 단결정이 요구되지만, 실제 결정 성장 과정에서는 성장온도와 Al 조성비 등의 성장 조건의 변화에 따라 전기적 광학적 특성 및 신뢰성에 큰 영향을 받는 것으로 보고되고 있다. 이에 본 연구에서는 DLTS (Deep Level Transient Spectroscopy) 방법을 이용하여 InAlAs 양자점 에피층의 깊은 준위 거동을 조사하였다. DLTS 측정 결과, 0.3eV 부근의 point defect과 0.57 ~ 0.70 eV 영역의 trap이 조사되었으며, 이는 갈륨 (Ga) vacancy와 산소 원자의 복합체에 기인한 결함으로 분석된다.

  • PDF

Effect of post annealing on the structural and electrical properties of $Ba_{0.5}Sr_{0.5}TiO_3$ films deposited on 4H-SiC (4H-SiC에 증착된 BST 박막의 열처리 효과에 따른 구조적, 전기적 특성)

  • Lee, Jae-Sang;Jo, Yeong-Deuk;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.196-196
    • /
    • 2008
  • We have investigated that the effect of post annealing on the structural and electrical properties of $Ba_{0.5}Sr_{0.5}TiO_3$ thin films. The BST thin films were deposited on n-type 4H-silicon carbide(SiC) using pulsed laser deposition (PLD). The deposition was carried out in oxygen ambient 100mTorr for 5 minutes, which results in about 300nm-thick BST films. For the BST/4H-SiC, 200nm thick silver was deposited on the BST films bye-beam evaporation. The X-ray diffraction patterns of the BST films revealed that the crystalline structure of BST thin films has been improved after post-annealing at $850^{\circ}C$ for 1 hour. The root mean square (RMS) surface roughness of the BST film measured by using a AFM was increased after post-annealing from 5.69nm to 11.49nm. The electrical properties of BST thin film were investigated by measuring the capacitance-voltage characteristics of a silver/BST/4H-SiC structure. After the post-annealing, dielectric constant of the film was increased from 159.67 to 355.33, which can be ascribed to the enhancement of the crystallinity of BST thin films.

  • PDF