• Title/Summary/Keyword: large-span structures

검색결과 267건 처리시간 0.026초

건축 인장구조시스템의 분류와 구성유형 (The Type of Composition and Classification of Tension Structure Systems in Architecture)

  • 이주나;박선우;박찬수
    • 한국공간구조학회논문집
    • /
    • 제3권3호
    • /
    • pp.111-120
    • /
    • 2003
  • Tension members is a type of effective structural member, which is often used in large span structures. The structure systems composed with tension members are combined in various way and specific formations. So, there are need to research into the formations of tension structure and the type of adaptation in tension structure architectures. The structure systems with tension members were considered as tension main system, vector system and tension supported bending system, comprehensively. And tension structures were classified into the formation of tension structure with uniaxial or multiaxial line tension member, with surface member, with hybrid member of line and surface, concerning the flow of tension force. In each the formation of tension structure, the typical adaptations to architecture were also investigated through architecture examples. The type of the formation can be used to plan an architecture with respect to the flow of tension force and structural feature.

  • PDF

빌딩의 진동제어를 위한 신경회로망 예측 PID 제어기 개발에 관한 연구 (A Study on the Development of Neural Network Predictive PID Controller for the Vibration Control of Building)

  • 조현철;이진우;이권순
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 춘계학술대회 학술발표 논문집
    • /
    • pp.71-74
    • /
    • 1998
  • In recent years, advances in construction techniques and materials have given rese to flexible light-weight structures like high-rise buildings and long-span bridges. Because these structures extremely susceptible to environmental loads, such as earthquakes and strong winds, these random loadings usually produce large deflection and acceleration on these structures. Vibration control system of structures are becoming an integral part of the structural system of the next generation of tall building. The proposed control system is applied to single degree of structure with mass damping and compared with conventional PID and neural network PID control system.

  • PDF

쌍곡선포물선 대공간 구조물의 측벽개구율에 따른 지붕의 풍압특성 (Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures)

  • 유장열;유기표
    • 한국공간구조학회논문집
    • /
    • 제13권1호
    • /
    • pp.51-57
    • /
    • 2013
  • There can be diverse causes in the destruction of a large space structure by strong wind such as characteristics of construction materials and changes in internal and external wind pressure of the structure. To evaluate the wind pressure of roof against the large space structure, wind pressure experiment is performed. However, in this wind pressure experiment, peak internal pressure coefficient is set according to the opening of the roof in Korea wind code. In this article, it was tried to identify the change of internal pressure coefficient and the characteristics of wind pressure coefficient acting on the roof by two kinds of opening on the side of the structure with Hyperbolic Paraboloid Spatial Structures roof. When analyzing internal pressure coefficient according to roof shape, it was found that minimum (52%) and maximum (30%~80%) overestimation was made comparing to partial opening type proposed in the current wind load. It is judged that evaluation according to the opening rate of the structure should be made to evaluate the internal pressure coefficient according to load.

대공간에서 전기음향 시스템에 따른 음향특성 변화 (The Effect of Sound Reinforcement Systems on the Acoustics of a Large-Span Spaces)

  • 정대업;주현경;최영지
    • 한국공간구조학회논문집
    • /
    • 제11권1호
    • /
    • pp.67-75
    • /
    • 2011
  • 본 연구는 컴퓨터 시뮬레이션을 이용하여 대공간에서 스피커 시스템의 변화에 따른 음장의 특성 변화를 검토하였다. 실의 음향특성변화는 실의 흡음력과 동시에 스피커 시스템의 지향성, 설치높이 및 개수를 조절하면서 예측 분석하였다. 연구 결과, 명료도 관련 지표인 D50 및 RASTI는 실의 흡음력 증가의 변화를 효과적으로 나타내는 것으로 분석되었다. 또 초기감쇠시간은 흡음력 증가에 따라 선형적으로 감소하였으나 저 고주파수대역에서는 오히려 증가하거나 변화를 보이지 않았으며, 잔향시간은 전체주파수대역에서 실의 흡음력 증가에 따라 감쇠하였으나 주파수대역별 결과에서는 오히려 증가하거나 비슷한 결과를 보였다. 이는 실의 음향특성이라기 보다는 감쇠구간의 비선형성에 기인한 것으로 판단된다. 스피커 시스템의 적용에 따른 분석결과, D50 및 RASTI는 실의 흡음력 증가에 크게 상관없이 거의 모든 시스템에서 'fair'이상으로 평가되었으며, 스피커의 설치위치가 높을수록 실의 흡음력 증가보다 스피커 지향특성 변화에 더 큰 영향을 받는 것으로 나타났다. 또한 스피커의 설치위치가 낮을수록 실의 잔향시간은 더 짧은 것으로 분석되었다. 시스템의 적용에 따른 잔향시간은 스피커 설치높이가 높을 경우 실의 흡음력 증가에 비례하여 감쇠하는 경향을 보였으나 스피커 설치높이가 낮은 경우 흡음력 증가에 의한 영향보다 시스템의 영향을 받는 것으로 나타났다.

폭설시 대변위해석을 이용한 온실의 피해원인 분석 (The Cause Analysis of Greenhouse Damage for Heavy Snow using Large Displacement Analysis)

  • 박순응;이종원;이석건;이현우;최재혁
    • 한국공간구조학회논문집
    • /
    • 제10권2호
    • /
    • pp.61-68
    • /
    • 2010
  • 최근에 폭설로 인한 온실의 붕괴가 빈번해져서 농가의 피해가 증가되고 있다. 히지만 폭설로 인한 온실의 붕괴를 막기 위한 정확한 구조해석에 대한 연구가 미약하여 매년 농가의 피해는 되풀이 되고 있다. 기존 온실의 구조해석 방법은 미소변위에 기초한 선형탄성해석으로 이루어지고 있다. 그러나 실제 온실의 강성은 건축 구조물의 강성에 비해 상당히 약하지만 하중은 폭설에 의해 상대적으로 크게 작용하여 변형이 크게 발생하고 구조물의 기하학적 형태가 변하므로 변형률-변위 관계가 비선형 거동을 한다. 본 연구에서는 폭설에 따른 온실의 붕괴를 막기 위하여 농가에서 많이 사용되는 농가 지도형 G형 단동온실과 농가보급형인 1-2W 기본형 연동온실에 대해 시간에 따른 하중단계별 기하학적 비선형 효과를 고려하여 온실의 정확한 거동분석과 구조적 안전성을 평가하는데 대변위해석 방법을 제시하고자한다.

  • PDF

강성개폐식 대공간 지붕의 개폐 관리풍속 사례 분석 (A Case Study of Retraction Controlled Wind Velocity on the Steel Retractable Roof of Large Span)

  • 송진영;윤성원
    • 한국공간구조학회논문집
    • /
    • 제18권1호
    • /
    • pp.93-100
    • /
    • 2018
  • The retractable roof structures have actions of various types of loads and external forces depending on the retraction and operation conditions of the roof in terms of efficiency of control and maintenance as the aspect of structural plan. In particular, there is a need for studies on the establishment of retraction controlled wind velocity to maintain the stable control and usability of roof structure against strong winds or sudden gusts during the retraction of the roof. In this paper, it was intended to provide basic materials for the development of guidelines on the operation and maintenance of domestic retractable buildings with large space by analyzing the factors affecting the retraction controlled wind velocity for the overseas stadiums with the large spatial retractable roof structures where the sliding system was applied on the steel retractable systems. As a result, the controlled wind velocity tends to decrease as the retractable roof area increases. On the other hand, the controlled wind velocity tends to increase as the retraction time increases. In addition, in the space-grid roof structures, the spherical roof structures type showed the average controlled wind velocity of 10m/sec lower than that of 17.3m/sec for curved-roof structure type, and in the curved-roof structure type, the truss roof structure showed the average controlled wind velocity of 8.9m/sec which is lower than that of 17.3m/sec for the space for the space-grid roof structure.

Simulation of stationary Gaussian stochastic wind velocity field

  • Ding, Quanshun;Zhu, Ledong;Xiang, Haifan
    • Wind and Structures
    • /
    • 제9권3호
    • /
    • pp.231-243
    • /
    • 2006
  • An improvement to the spectral representation algorithm for the simulation of wind velocity fields on large scale structures is proposed in this paper. The method proposed by Deodatis (1996) serves as the basis of the improved algorithm. Firstly, an interpolation approximation is introduced to simplify the computation of the lower triangular matrix with the Cholesky decomposition of the cross-spectral density (CSD) matrix, since each element of the triangular matrix varies continuously with the wind spectra frequency. Fast Fourier Transform (FFT) technique is used to further enhance the efficiency of computation. Secondly, as an alternative spectral representation, the vectors of the triangular matrix in the Deodatis formula are replaced using an appropriate number of eigenvectors with the spectral decomposition of the CSD matrix. Lastly, a turbulent wind velocity field through a vertical plane on a long-span bridge (span-wise) is simulated to illustrate the proposed schemes. It is noted that the proposed schemes require less computer memory and are more efficiently simulated than that obtained using the existing traditional method. Furthermore, the reliability of the interpolation approximation in the simulation of wind velocity field is confirmed.

Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges

  • Lonetti, Paolo;Pascuzzo, Arturo
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.847-866
    • /
    • 2014
  • This paper describes a formulation to predict optimum post-tensioning forces and cable dimensioning for self-anchored cable-stayed suspension bridges. The analysis is developed with respect to both dead and live load configurations, taking into account design constrains concerning serviceability and ultimate limit states. In particular, under dead loads, the analysis is developed with the purpose to calculate the post-tensioning cable forces to achieve minimum deflections for both girder and pylons. Moreover, under live loads, for each cable elements, the lowest required cross-section area is determined, which verifies prescriptions, under ultimate or serviceability limit states, on maximum allowable stresses and bridge deflections. The final configuration is obtained by means of an iterative procedure, which leads to a progressive definition of the stay, hanger and main cable characteristics, concerning both post-tensioning cable stresses and cross-sections. The design procedure is developed in the framework of a FE modeling, by using a refined formulation of the bridge components, taking into account of geometric nonlinearities involved in the bridge components. The results demonstrate that the proposed method can be easily utilized to predict the cable dimensioning also in the framework of long span bridge structures, in which typically more complexities are expected in view of the large number of variables involved in the design analysis.

해상 장대교량의 시공중 계측 및 유지관리 시스템 구축을 위한 분석 연구 (Analysis of New Health Monitoring System for Long Span Bridge over the Sea)

  • 공병승
    • 한국해양공학회지
    • /
    • 제22권5호
    • /
    • pp.142-147
    • /
    • 2008
  • The cases of using new methods of big blocks are largely increasing on Recent large-scale bridge structures. So the accurate data of responses of bridges following environmental causes are required to be quickly recorded in order to predict. For this reason described above, the research on measuring system should be conducted for more knowledge of the details on application and stability of new methods. In this study, the new health monitoring system that can monitor the real behavior and damages of the bridge during all processes of construction is presented by analyzing cases of domestic and overseas bridge health monitoring system, and applied methods of following bridges.

Nonlinear aerostatic stability analysis of Hutong cable-stayed rail-cum-road bridge

  • Xu, Man;Guo, Weiwei;Xia, He;Li, Kebing
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.485-503
    • /
    • 2016
  • To investigate the nonlinear aerostatic stability of the Hutong cable-stayed rail-cum-road bridge with ultra-kilometer main span, a FEM bridge model is established. The tri-component wind loads and geometric nonlinearity are taken into consideration and discussed for the influence of nonlinear parameters and factors on bridge resistant capacity of aerostatic instability. The results show that the effect of initial wind attack-angle is significant for the aerostatic stability analysis of the bridge. The geometric nonlinearities of the bridge are of considerable importance in the analysis, especially the effect of cable sag. The instable mechanism of the Hutong Bridge with a steel truss girder is the spatial combination of vertical bending and torsion with large lateral bending displacement. The design wind velocity is much lower than the static instability wind velocity, and the structural aerostatic resistance capacity can meet the requirement.