• Title/Summary/Keyword: large-scale systems

Search Result 1,879, Processing Time 0.03 seconds

An Analytic solution for the Hadoop Configuration Combinatorial Puzzle based on General Factorial Design

  • Priya, R. Sathia;Prakash, A. John;Uthariaraj, V. Rhymend
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3619-3637
    • /
    • 2022
  • Big data analytics offers endless opportunities for operational enhancement by extracting valuable insights from complex voluminous data. Hadoop is a comprehensive technological suite which offers solutions for the large scale storage and computing needs of Big data. The performance of Hadoop is closely tied with its configuration settings which depends on the cluster capacity and the application profile. Since Hadoop has over 190 configuration parameters, tuning them to gain optimal application performance is a daunting challenge. Our approach is to extract a subset of impactful parameters from which the performance enhancing sub-optimal configuration is then narrowed down. This paper presents a statistical model to analyze the significance of the effect of Hadoop parameters on a variety of performance metrics. Our model decomposes the total observed performance variation and ascribes them to the main parameters, their interaction effects and noise factors. The method clearly segregates impactful parameters from the rest. The configuration setting determined by our methodology has reduced the Job completion time by 22%, resource utilization in terms of memory and CPU by 15% and 12% respectively, the number of killed Maps by 50% and Disk spillage by 23%. The proposed technique can be leveraged to ease the configuration tuning task of any Hadoop cluster despite the differences in the underlying infrastructure and the application running on it.

The Evolution of Screening Center for COVID-19 Analyzed by TRIZ (트리즈로 분석한 코로나19 대응 선별진료소의 진화)

  • Song, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.139-149
    • /
    • 2022
  • Korea's Corona 19(COVID-19) quarantine, referred to as 'K-Quarantine', is a globally recognized quarantine system that has achieved both conflicting goals: health and economy. The quarantine system represented by 3T(Test-Trace-Treat) is not a method of blocking an area, but a method of screening and treating infected and non-infected persons. The screening center, one of the key elements of this screening treatment system, has evolved to suit the timing and situation of COVID-19, and has succeeded in initial response by conducting large-scale tests quickly and safely. By analyzing the evolution of screening centers that produced such significant results from a problem-solving point of view, it proved its meaning as a practical success case of creative problem-solving. In addition, the usefulness of TRIZ (Russian abbreviation of Theory of Solving Inventive Problem), a creative problem-solving theory, was confirmed through an analysis of actual verified cases of COVID-19 response. TRIZ is a problem-solving theory created by analyzing the regularity of invention patents, and is widely used not only in the technical field but also in the non-technical fields such as design, management, and education. The results of this study are expected to provide useful meaning and practical examples to researchers interested in system analysis and TRIZ application from a problem-solving perspective.

Feasibility study on using crowdsourced smartphones to estimate buildings' natural frequencies during earthquakes

  • Ting-Yu Hsu;Yi-Wen Ke;Yo-Ming Hsieh;Chi-Ting Weng
    • Smart Structures and Systems
    • /
    • v.31 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • After an earthquake, information regarding potential damage to buildings close to the epicenter is very important during the initial emergency response. This study proposes the use of crowdsourced measured acceleration response data collected from smartphones located within buildings to perform system identification of building structures during earthquake excitations, and the feasibility of the proposed approach is studied. The principal advantage of using crowdsourced smartphone data is the potential to determine the condition of millions of buildings without incurring hardware, installation, and long-term maintenance costs. This study's goal is to assess the feasibility of identifying the lowest fundamental natural frequencies of buildings without knowing the orientations and precise locations of the crowds' smartphones in advance. Both input-output and output-only identification methods are used to identify the lowest fundamental natural frequencies of numerical finite element models of a real building structure. The effects of time synchronization and the orientation alignment between nearby smartphones on the identification results are discussed, and the proposed approach's performance is verified using large-scale shake table tests of a scaled steel building. The presented results illustrate the potential of using crowdsourced smartphone data with the proposed approach to identify the lowest fundamental natural frequencies of building structures, information that should be valuable in making emergency response decisions.

A Software Development of Energy Consumption for HVAC System of Building (건물에너지 소비량 해석 소프트웨어 개발)

  • Kim B. H;Jo S. B;Kim J. P
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.19 no.2
    • /
    • pp.67-81
    • /
    • 1990
  • The objective of this is to develop a practical software package to calculate annual energy consumption of HVAC (Heating Ventilating, and Air Conditioning) System in a building. It can quickly estimate loads and energy consumption, and have a function of economic analysis through the estimation of operating cost. Techniques of save energy consumption used in a building are necessary from the stage of design process to operation. The single most significant task is on HVAC Systems. Their installation costs, and related operating costs have enormous influence upon initial and maintenance costs. HVAC designers and engineers now have a wide variety of software choices available, but only a few of them have been developed in this country and no source program has been disclosed. Neither load culculation nor estimation of energy consumption is systematically made by the domestic HVAC design firms. Even though computer improved over the years with a trend of large scale load calculation and system selection through simulaion, the utilization of software nowadays does not make good progress due to lack of working environment. Therefore, it is necessary to develop a practical software package with which load calculation can be made with ease and kind manner. This study concerns the development of a software package which makes it possible to design HVAC system and save energy consumption in operation. The algorithm used in this program is a Modified Bin Method widely known as a simplified energy analysis means.

  • PDF

A Comprehensive Understanding of Model Lipid Membranes: Concepts to Applications

  • Sonam Baghel;Monika Khurana
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.2
    • /
    • pp.89-98
    • /
    • 2023
  • The cell membrane, also known as the biological membrane, surrounds every living cell. The main components of cell membranes are lipids and therefore called as lipid membranes. These membranes are mainly made up of a two-dimensional lipid bilayer along with integral and peripheral proteins. The complex nature of lipid membranes makes it difficult to study and hence artificial lipid membranes are prepared which mimic the original lipid membranes. These artificial lipid membranes are prepared from phospholipid vesicles (liposomes). The liposomes are formed when self-forming phospholipid bilayer comes in contact with water. Liposomes can be unilamellar or multilamellar vesicles which comprises of phospholipids that can be produced naturally or synthetically. The phospholipids are non-toxic, biodegradable and are readily produced on a large scale. These liposomes are mostly used in the drug delivery systems. This paper offers comprehensive literature with insights on developing basic understanding of lipid membranes from its structure, organization, and phase behavior to its potential use in biomedical applications. The progress in the field of artificial membrane models considering methods of preparation of liposomes for mimicking lipid membranes, interactions between the lipid membranes, and characterizing techniques such as UV-visible, FTIR, Calorimetry and X-ray diffraction are explained in a concise manner.

Thermography-based coating thickness estimation for steel structures using model-agnostic meta-learning

  • Jun Lee;Soonkyu Hwang;Kiyoung Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.32 no.2
    • /
    • pp.123-133
    • /
    • 2023
  • This paper proposes a thermography-based coating thickness estimation method for steel structures using model-agnostic meta-learning. In the proposed method, a halogen lamp generates heat energy on the coating surface of a steel structure, and the resulting heat responses are measured using an infrared (IR) camera. The measured heat responses are then analyzed using model-agnostic meta-learning to estimate the coating thickness, which is visualized throughout the inspection surface of the steel structure. Current coating thickness estimation methods rely on point measurement and their inspection area is limited to a single point, whereas the proposed method can inspect a larger area with higher accuracy. In contrast to previous ANN-based methods, which require a large amount of data for training and validation, the proposed method can estimate the coating thickness using only 10- pixel points for each material. In addition, the proposed model has broader applicability than previous methods, allowing it to be applied to various materials after meta-training. The performance of the proposed method was validated using laboratory-scale and field tests with different coating materials; the results demonstrated that the error of the proposed method was less than 5% when estimating coating thicknesses ranging from 40 to 500 ㎛.

AR-based 3D Digital Map Visualization Support Technology for Field Application of Smart Construction Technology

  • Song, Jinwoo;Hong, Jungtaek;Kwon, Soonwook
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1255-1255
    • /
    • 2022
  • Recently, research on digital twins to generate digital information and manage construction in real-time using advanced technology is being conducted actively. However, in the construction industry, it is difficult to optimize and apply digital technology in real-time due to the nature of the construction industry in which information is constantly fluctuating. In addition, inaccurate information on the topography of construction projects is a major challenge for earthmoving processes. In order to ultimately improve the cost-effectiveness of construction projects, both construction quality and productivity should be addressed through efficient construction information management in large-scale earthworks projects. Therefore, in this study, a 3D digital map-based AR site management work support system for higher efficiency and accuracy of site management was proposed by using unmanned aerial vehicles (UAV) in wide earthworks construction sites to generate point cloud data, building a 3D digital map through acquisition and analysis of on-site sensor-based information, and performing the visualization with AR at the site By utilizing the 3D digital map-based AR site management work support system proposed in this study, information is able to be provided quickly to field managers to enable an intuitive understanding of field conditions and immediate work processing, thereby reducing field management sluggishness and limitations of traditional information exchange systems. It is expected to contribute to the improvement of productivity by overcoming factors that decrease productivity in the construction industry and the improvement of work efficiency at construction sites.

  • PDF

Integration Technologies for 3D Systems

  • Ramm, P.;Klumpp, A.;Wieland, R.;Merkel, R.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.261-278
    • /
    • 2003
  • Concepts.Wafer-Level Chip-Scale Concept with Handling Substrate.Low Accuracy Placement Layout with Isolation Trench.Possible Pitch of Interconnections down to $10{\mu}{\textrm}{m}$ (Sn-Grains).Wafer-to-Wafer Equipment Adjustment Accuracy meets this Request of Alignment Accuracy (+/-1.5 ${\mu}{\textrm}{m}$).Adjustment Accuracy of High-Speed Chip-to-Wafer Placement Equipment starts to meet this request.Face-to-Face Modular / SLID with Flipped Device Orientation.interchip Via / SLID with Non-Flipped Orientation SLID Technology Features.Demonstration with Copper / Tin-Alloy (SLID) and W-InterChip Vias (ICV).Combination of reliable processes for advanced concept - Filling of vias with W as standard wafer process sequence.No plug filling on stack level necessary.Simultanious formation of electrical and mechanical connection.No need for underfiller: large area contacts replace underfiller.Cu / Sn SLID layers $\leq$ $10{\mu}{\textrm}{m}$ in total are possible Electrical Results.Measurements of Three Layer Stacks on Daisy Chains with 240 Elements.2.5 Ohms per Chain Element.Contribution of Soldering Metal only in the Range of Milliohms.Soldering Contact Resistance ($0.43\Omega$) dominated by Contact Resistance of Barrier and Seed Layer.Tungsten Pin Contribution in the Range of 1 Ohm

  • PDF

Evaluation on Large-scale Biowaste Process: Spent Coffee Ground Along with Real Option Approach

  • Junho Cha;Sujin Eom;Subin Lee;Changwon Lee;Soonho Hwangbo
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.59-70
    • /
    • 2023
  • This study aims to introduce a biowaste processing system that uses spent coffee grounds and implement a real options method to evaluate the proposed process. Energy systems based on eco-friendly fuels lack sufficient data, and thus along with conventional approaches, they lack the techno-economic assessment required for great input qualities. On the other hand, real options analysis can estimate the different costs of options, such as continuing or abandoning a project, by considering uncertainties, which can lead to better decision-making. This study investigated the feasibility of a biowaste processing method using spent coffee grounds to produce biofuel and considered three different valuation models, which were the net present value using discounted cash flow, the Black-Scholes and binomial models. The suggested biowaste processing system consumes 200 kg/h of spent coffee grounds. The system utilizes a tilted-slide pyrolysis reactor integrated with a heat exchanger to warm the air, a combustor to generate a primary heat source, and a series of condensers to harness the biofuel. The result of the net present value is South Korean Won (KRW) -225 million, the result of the binomial model is KRW 172 million, and the result of the Black-Scholes model is KRW 1,301 million. These results reveal that a spent coffee ground-related biowaste processing system is worthy of investment from a real options valuation perspective.

Internal structure and kinematics of the massive star forming region W4

  • Lim, Beomdu;Yun, Hyeong-Sik;Rauw, Gregor;Naze, Yael;Kim, Jinyoung S.;Lee, Jeong-Eun;Hwang, Narae;Park, Byeong-Gon;Park, Sunkyung;Sung, Hwankyung;Kim, Seulgi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.72.3-72.3
    • /
    • 2019
  • OB associations are young stellar systems on a few tens to a hundred parsec scale, and many of them are composed of multiple substructures. It is suggested that some hints about their formation process are probably imprinted on structural features and internal kinematics. In this context, we study the massive star forming region W4 in the Cassiopeia OB6 association using the Gaia proper motion data and high-resolution optical spectra taken from Hectochelle on MMT. We probe the structure and internal kinematics of W4 to trance its formation process. Several nonmembers with different kinematic properties are excluded in our sample. Some of them may be young stellar population spread over a large area of the Perseus spiral arm given their wide spatial distribution over 50 parsecs. W4 is composed of an central open cluster (IC 1805) and an extended stellar component. Their global expansion patterns are detected in stellar proper motion. In this presentation, we will further discuss the formation process of W4, based on the velocity dispersions of stars comprising these substructure.

  • PDF