Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) [Grant Number 2019R1A3B3067987].
References
- A.A.o.S.a.H.T. Officials (Ed.) (2019), Standard Practice for Evaluation of Coating Systems for Structural Steel.
- Avci, O., Abdeljaber, O. and Kiranyaz, S. (2022), "Structural damage detection in civil engineering with machine learning: Current state of the artzz", Proceedings of the Society for Experimental Mechanics Series, pp. 223-229. https://doi.org/10.1007/978-3-030-75988-9_17.
- Beamish, D. (2004), "Using ultrasonic coating thickness gauges", Mater. Perform., 43, 30-33.
- Bu, C., Tang, Q., Liu, Y., Yu, F., Mei, C. and Zhao, Y. (2016), "Quantitative detection of thermal barrier coating thickness based on simulated annealing algorithm using pulsed infrared thermography technology", Appl. Thermal Eng., 99, 751-755. https://doi.org/10.1016/J.APPLTHERMALENG.2016.01.143
- Chauchard, F., Cogdill, R., Roussel, S., Roger, J.M. and Bellon-Maurel, V. (2004), "Application of LS-SVM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes", Chemomet. Intell. Lab. Syst., 71(2), 141-150. https://doi.org/10.1016/j.chemolab.2004.01.003
- Cheng, W. (2017), "Thickness measurement of metal plates using swept-frequency eddy current testing and impedance normalization", IEEE Sensors Journal, 17(14), 4558-4569. https://doi.org/10.1109/JSEN.2017.2710356
- Darban, S., Tehrani, H.G. and Karballaeezadeh, N. (2020), "Presentation a new method for determining of bridge condition index by using analytical hierarchy process". https://doi.org/10.20944/PREPRINTS202003.0420.V1
- Farrar, C.R. and Worden, K. (2012), Structural health monitoring: a machine learning perspective, John Wiley & Sons.
- Finn, C., Abbeel, P. and Levine, S. (2017), "Model-agnostic meta-learning for fast adaptation of deep networks", Proceedings of the 34th International Conference on Machine Learning, ICML 2017, 3, 1856-1868.
- Flah, M., Nunez, I., Ben Chaabene, W. and Nehdi, M.L. (2021), "Machine learning algorithms in civil structural health monitoring: A systematic review", Arch. Computat. Methods Eng., 28(4), 2621-2643. https://doi.org/10.1007/S11831-020-09471-9
- Giurlani, W., Berretti, E., Innocenti, M. and Lavacchi, A. (2019), "Coating thickness determination using X-ray fluorescence spectroscopy: Monte Carlo simulations as an alternative to the use of standards", Coatings, 9(2), 79. https://doi.org/10.3390/COATINGS9020079
- Goulet, J.A. (2020), Probabilistic Machine Learning for Civil Engineers, MIT Press.
- Hahnloser, R.H., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J. and Seung, H.S. (2000), "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit", Nature, 405(6789), 947-951. https://doi.org/10.1038/35016072
- Hwang, S., Kim, H., Lim, H.J., Liu, P. and Sohn, H. (2022), "Automated visualization of steel structure coating thickness using line laser scanning thermography", Automat. Constr., 139, 104267. https://doi.org/10.1016/J.AUTCON.2022.104267
- I.a.T.o.S.K. Ministry of Land (Ed.) (2019), "Detailed Guidelines for Safety and Maintenance of Facilities."
- Kingma, D.P. and Ba, J. (2015), "Adam: A method for stochastic optimization", Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, Vol. 1, pp. 448-456.
- Standard, N.O.R.S.O.K. (2012), "Surface preparation and protective coating", NORSOK M-501, Norway.
- Moskovchenko, A., Vavilov, V., Svantner, M., Muzika, L. and Houdkova, S. (2020), "Active IR thermography evaluation of coating thickness by determining apparent thermal effusivity", Materials, 13(18). 10.3390/MA13184057
- Muzika, L. and Svantner, M. (2020), "Flash pulse phase thermography for a paint thickness determination", IOP Conference Series: Mater. Sci. Eng., 723(1), 012021. https://doi.org/10.1088/1757-899X/723/1/012021
- Ochiai, S., Iwamoto, S., Nakamura, T. and Okuda, H. (2007), "Crack spacing distribution in coating layer of galvannealed steel under applied tensile strain", ISIJ Int., 47(3), 458-465. https://doi.org/10.2355/isijinternational.47.458
- Pan, S.J. and Yang, Q. (2010), "A survey on transfer learning", IEEE Transact. Knowledge Data Eng., 22(10), 13451359. https://doi.org/10.1109/TKDE.2009.191
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L. and Desmaison, A. (2019), "Pytorch: An imperative style, high-performance deep learning library", Adv. Neural Inform. Processing Systems, 32.
- Reich, Y. (1997), "Machine learning techniques for civil engineering problems", Comput.-Aided Civil Infrastr. Eng., 12(4), 295-310. https://doi.org/10.1111/0885-9507.00065
- Russe, I.S., Brock, D., Knop, K., Kleinebudde, P. and Zeitler, J.A. (2012), "Validation of terahertz coating thickness measurements using X-ray microtomography", Molecul. Pharmaceut., 9(12), 3551-3559. https://doi.org/10.1021/MP300383Y
- Shen, H.K., Chen, P.H. and Chang, L.M. (2013), "Automated steel bridge coating rust defect recognition method based on color and texture feature", Automat. Constr., 31, 338-356. https://doi.org/10.1016/J.AUTCON.2012.11.003
- Shrestha, R. and Kim, W. (2017), "Evaluation of coating thickness by thermal wave imaging: A comparative study of pulsed and lock-in infrared thermography-Part I: Simulation", Infrared Phys. Technol., 83, 124-131. https://doi.org/10.1016/J.INFRARED.2017.04.016
- Wang, H., Hsieh, S.J., Peng, B. and Zhou, X. (2016), "Nonmetallic coating thickness prediction using artificial neural network and support vector machine with time resolved thermography", Infrared Phys. Technol., 77, 316-324. https://doi.org/10.1016/j.infrared.2016.06.015
- Zhang, J.Y., Meng, X.B. and Ma, Y.C. (2016), "A new measurement method of coatings thickness based on lock-in thermography", Infrared Phys. Technol., 76, 655-660. https://doi.org/10.1016/j.infrared.2016.04.028
- Zhang, J., Cho, Y., Kim, J., Malikov, A.K.U., Kim, Y.H., Yi, J.H. and Li, W. (2021), "Non-destructive evaluation of coating thickness using water immersion ultrasonic testing", Coatings, 11(11), 1421. https://doi.org/10.3390/COATINGS11111421