• Title/Summary/Keyword: large zone

Search Result 1,143, Processing Time 0.025 seconds

Microstructure Analysis of Large Turbine Generator Stator Insulations (대형 터빈발전기 고정자 권선의 미세구조 분석)

  • Kim, Hee-Dong;Ju, Young-Ho;Song, Seong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1452-1454
    • /
    • 2002
  • Large turbine generator(rated 22kV) has failed in the stator winding area during normal operation. The capacitance and tan${\delta}$ were measured by Schering bridge in the zone 1, 2 and zone 3-6 stator windings. The capacitance and tan${\delta}$ in the zone 1, 2 of stator winding were higher than those of zone 3-6 in the stator winding. Experiments on microstructure property were conducted in the zone 1, 2 and zone 3-6 insulations, which were drawn out from stator windings of the large turbine generator. Microstructure analysis was characterized using scanning electron microscope(SEM). SEM results indicated that several isolated delaminations occurred at the interface of mica/epoxy insulations. Both thermal and mechanical aging cause the delamination.

  • PDF

Comparison on Terror Risk of Large Space Structures and High-rise Buildings in Korea (국내 대공간 건축물과 고층 건축물의 테러위험도 비교)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Since the 1980s, the number of large space buildings in Korea has consistently been increasing due to large scale international competitions such as the Olympics and the World Cup, demands for environmental improvement, and development of structural systems. Due to these reasons, this paper conducted a comparative analysis on terrorism risk factors of large space structure and skyscrapers in Korea. The results suggest that the total risk level of high-rise and large space structure was "medium level risk" and that the terrorism risk level for large space structure was as high as that for high-rise buildings. As it relates to the risk levels depending on scenarios, terrorism risks to large space structure were higher than high-rise buildings in the "internal explosion" and "internal intrusion" categories. And the results of analyzing explosion-related scenarios except for CBR suggest that terrorism risks to large space structure were highest when it comes to Internal-Explosive followed by Internal-Intrusion and Explosive-Zone I; and the results showed a regular pattern. On the other hand, in the case of high-rise buildings, terrorism risks were highest in Internal-Explosive followed by Explosive-Zone I and Explosive-Zone II; and the results showed an irregular pattern.

Design and Planning Criteria for the Green Buffer Zone (환경친화적 완충녹지의 기준설정)

  • 박은영;유병림
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.25-35
    • /
    • 2004
  • The purpose of the study is to analyze the existing situation of the green buffer zone in the large scale industrial site and other major residential apartment areas. In this study, it is specifically intended that the planning guideline be upgraded to adopt future landuse trends and thus to suggest design criteria for management of the buffer zone. The framework of the analysis is to review the current landuse, noise reduction, ecological implications and landscape in general. Although the major function of a green buffer zone is considered to protect the residential area from various hazards of industrial, traffic, and visual environment, the situation is that most of the zones are maintained at a minimum level of services by local government. The study carried out intensively almost every type of case studied throughout the country, which implies that the management of the green buffer zone should be expanded physically enough to function for its original objectives. The study recommends that ecological management of the green buffer zone be emphasized and therefore the criteria for this purpose as well as noise issue should be developed prior to the landuse aspects. The study suggests specific guidelines for planning and design for the green buffer zone development. This study should be verified positively through the sustainable monitoring and requires nationwide and overall examination so that it may be applied to whole green spaces.

Case Studiy on Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone using Loading Test (선단유압재하시험을 이용한 단층파쇄대에 설치된 대구경 현장타설말뚝의 선단지지력 측정 사례)

  • Jung, Chang-Kyu;Kim, Tae-Hoon;Jung, Sung-Min;Hwang, Kun-Bae;Choi, Yong-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.74-81
    • /
    • 2004
  • In this study, static end loading tests with load transfer measurement were accomplished for large diameter drilled shaft constructed in fault zone. Yield pile capacity (or ultimate pile capacity) from load-settlement curve was determined and axial load transfer behavior was measurd. The end bearing capacity was increased 2 times due to grouting the toe ground under pile base.

  • PDF

A critical analysis of the Incheon Free Economic Zone:Can Incheon move beyond being a gateway to Seoul?

  • McCarty, Dakota;Park, Ju Moon
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.61-70
    • /
    • 2018
  • Incheon, South Korea, is a rapidly growing port city that has long held an important role in the country. While for most of its history it has been considered more of a coastal extension of Seoul, it is now trying to grow from that role and become a global city. National and local initiatives and acts have led to the Incheon Free Economic Zone (IFEZ). This large zone connects three smaller districts into one large project. The goal of the project is to assert Incheon as its own city and go beyond its role as merely a gateway to Seoul. However, as most large-scale projects go, there are multiple issues and constraints faced by the IFEZ. This paper analyzes the project and gives critique on how the project could possibly achieve its goal more quickly.

A Study on the Measurement of End Bearing Capacity for Large Diameter Drilled Shaft Constructed in Fault Zone Using the Static Bi-directional End Leading Test (양방향 선단재하시험을 이용한 단층파쇄대에 시공된 대구경 현장타설말뚝의 선단지지력 측정 연구)

  • 정창규;정성민;황근배;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.135-143
    • /
    • 2004
  • In the land section of marine bridge construction site, to confirm the end bearing of large diameter drilled shaft constructed in the fault zone which was discovered unexpectedly, the hi-directional end loading tests were performed. The objectives of this study are to confirm the end bearing of the pile constructed in fault zone and the increasing effect of end bearing after grouting the base ground beneath the pile toe. After grouting the pile base ground, the settlement of pile base decreased considerably and the pile base resistance increased more than twice.

A Study on the Quench Initiation and Propagation Characteristics in GdBCO Racetrack Pancake Coil for Large-Scale Rotating Machines (대형회전기기응용을 위한 GdBCO 레이스트랙형 팬케이크 코일의 ��치 발생과 전파특성에 관한 연구)

  • Yang, D.G.;Song, J.B.;Kim, K.L.;Kwon, O.J.;Lee, W.S.;Ko, T.K.;Lee, H.G.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.24-30
    • /
    • 2011
  • The stability issue of high temperature superconducting (HTS) racetrack coils is one of the most important factors for the development of large-scale rotating machines, such as ship propulsion motors and power generators. However, The stability and normal zone propagation characteristics of HTS racetrack pancake (RP) coils are not sufficient yet. In this study, quench tests for a GdBCO racetrack pancake coil were carried out under the condition of $LN_2$ at 77 K. Minimum quench energy and two-dimensional normal zone propagation velocities of the coil are also discussed. Normal zone propagation velocity in the coil's curved section is faster than in its straight section due to stress effects. The test results show that the protection of the straight section is of greater importance than that of the curved section when GdBCO racetrack pancake coils are applied to large-scale rotating machines.

Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements

  • Mamen, Belgacem;Hammoud, Farid
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2021
  • Failure mechanism which can affect geotechnical infrastructures (shallow foundations, retaining walls, and piles) constitutes one of the most encountered problems during the design process. In this respect, the shear behavior of interfaces between grained soils and solid building materials, as well as those between cohesive soils should be investigated. Therefore, a range of ring shear tests with different cohesive soils and stainless-steel interfaces have been carried out through the Bromhead apparatus that allows simulating large displacements along a failure surface. The effects of steel rings roughness and soil type on the residual friction coefficient and the shear zone features (structure, thickness, and texture orientation angle) have been investigated using the Scanning Electron Microscopy. The obtained results indicate that the residual friction coefficient and the structural characteristics of the shear zone vary according to the surface roughness and the soil type. Scanning electron microscopy reveals that the particles inside the shear zone tend to be re-oriented. Also, the shear failure mechanism can be identified along with the interface, within the soil, or simultaneously at the interface and within the soil specimen.

A Study on the Soft Ground Distubance Characteristics by Large Block Sample (대형자연시료를 이용한 지반교란 특성에 관한 연구)

  • Yu, Seong-Jin
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.43
    • /
    • pp.98-106
    • /
    • 2007
  • In this paper, a ground disturbance effects, strength and consolidation characteristics of soft clay through using the large block samples($\theta$:300mm, H:400mm) and the piston samples, f hose which had been gathered in west coast and south coast. Especially, we have assessed the coefficient of horizontal consolidation when penetrating the mandrel considering the variance of ratio between diameter and height in drainage sample through the experiment of the oedometer test and Rowecell and also investigated the disturbance area in smear zone by interior model test, the strength originated by disturbance, the variance in characteristics of the consolidation. As the result, the large block sample has been investigated that ihe uniaxial compression test(qu) was shown bigger than the piston sample by about 11-19%. Under the size of anistropy in consolidation, the coefficient ratio of consolidation(ch/cv,) perfomed by standard consolidation test(SC) was shown bigger than that of (Cro/Cv) by the Rowecell test. And the coefficient ratio of consolidation(Cro/Cv) perfomed by piston sample was evaluated bigger than that Of (Cro/Cv) by the large block sample by about 0.9-1.9. The coefficient ratio of consolidation along with the variance in ratio of between diameter and height when penetrating the mandrel was shown big difference according to the characteristics of soil of the specimen. In addition, ds/dw of smear zone at the marine clay in west-south was ranged from 1.6 to 4.2. The width of variance in rat io[(qud)/(quud)] of strength n the area between disturbance and undisturbance was shown big as about 72-91% but the principle was judged with the similiar range when the decrease of the strength in smear zone become the zone under 25% in unditurbance area.

  • PDF

Mechanism of Hot Cracking in High Strength Al Welds (고강도 알루미늄합금 용접부의 고온균열 Mechanism)

  • 이창희;조성석
    • Journal of Welding and Joining
    • /
    • v.14 no.3
    • /
    • pp.93-104
    • /
    • 1996
  • This study evaluated relative hot cracking susceptibility of commercial aluminum alloy welds, and then suggested possible mechanisms operated in the weld fusion zone and in the heat affected zone based on the observed cracking morphologies, fractography and microstructural features. The fusion zone solidification cracking was found to be mainly due to a microsegregation of Cu, Si, and Mg in grain boundaries, while liquation cracking in the HAZ was by the incipient melting of the segregated grain boundaries and the consitutional liquation of large aging precipitates and intermetallic compounds in the partially melted zone adjacent to the fusion line which experienced a rapid thermal excursion during welding.

  • PDF