• 제목/요약/키워드: large vessel

검색결과 667건 처리시간 0.032초

대형선망어업의 동태적 생산효율성 분석 (Analyzing the Dynamic Productive Efficiency of Large Purse Seine Fishery in Korea)

  • 서주남;김도훈
    • 수산경영론집
    • /
    • 제43권1호
    • /
    • pp.11-18
    • /
    • 2012
  • This study is aimed to estimate a dynamic productive efficiency by vessel of large purse seine fishery and analyze changes of them over times using a window/DEA method. In addition, based on estimation results, it aims to suggest production management implications for an viable development of fisheries. Results indicated that an annual efficiency change of large purse seine fishery was estimated at 0.77 for 2007~2008, 0.83 for 2008~2009, and 0.77 for 2009~2010, showing a decreasing trend. As returns on sales of vessels of large purse seine fishery showed a decreasing trend, the degree of efficiency of a vessel might be closely related to the fishing profitability. The Window/DEA method was used in this study to estimate the efficiencies of vessels for large purse seine fishery. This method is well known and widely used to analyze the dynamic efficiency and it can provide useful implications for management of input factors. As a limitation of this study, it was not able to provide detailed management ways to reduce inefficiencies. However, they can be investigated with data on managerial factor, human factor, distribution factors as a future study.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

The Floating Drilling, Production, Storage, and Offloading Vessel for the Large Deepwater Field Development

  • John Halkyard;Park, Guibog;Igor Prislin;Atle Steen;Phil Hawley
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제3권1호
    • /
    • pp.1-7
    • /
    • 2000
  • A new alternative for large deepwater field development is described. This "Oil Box" (aka "Box Spar") is a multifunction vessel capable of floating drilling, production, storage and offloading (FDPSO). It is distinguished from other Floating Production, Storage and Offloading (FPSO) vessels by its unique hull form and oil storage system. It's main advantages are flexibility derived from the floatover deck option, use of proven top tensioned riser technology, and motion characteristics which make it operable in a wide range of environmental conditions.

  • PDF

근해 대형 선망선의 횡동요 경감을 위한 최적의 빌지킬 설계 (An optimal bilge keel design to reduce the rolling of the offshore large purse seiner)

  • 김용직;강일권;박병수;함상준
    • 수산해양기술연구
    • /
    • 제50권2호
    • /
    • pp.147-153
    • /
    • 2014
  • The purpose of this paper is to examine the roll damping characteristics by bilge keels on the fishing vessel. Unlike other degree of freedom motions, roll motion is highly nonlinear. However the quantitative evaluation of roll damping combined with waves is very important for the fishing vessel. To reduce roll motion, roll motion stabilizers such as a bilge keel is used due to easy made and cheap cost rather than anti-rolling tank and fin-stabilizer. Authors paid attention to the shape of bilge keel and waves to grasp the roll damping for the fishing vessel and studied about the difference of tendencies of roll angle following the shapes of bilge keel. The model ship was the offshore large purse seiner and four types of bilge keel were used. The data from the experiments were provided and analyzed to investigate the rolling characteristics of the model ship being affected by the wave height, wave period and bilge keel shape. The results of the study showed that three types of the bilge keel have little effective, but only one has an effect on the roll damping. So bilge keel shape and its attachment method need to be a future study for the practical use in fishing vessel.

The Development of a 20MW PWM Driver for Advanced Fifteen-Phase Propulsion Induction Motors

  • Sun, Chi;Ai, Sheng;Hu, Liangdeng;Chen, Yulin
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.146-159
    • /
    • 2015
  • Since the power capacity needed for the propulsion of large ships is very large, a multiphase AC induction propulsion mode is generally adopted to meet the higher requirements of reliability, redundancy and maintainability. This paper gives a detailed description of the development of a 20MW fifteen-phase PWM driver for advanced fifteen-phase propulsion induction motors with a special third-harmonic injection in terms of the main circuit hardware, control system design, experiments, etc. The adoption of the modular design method for the main circuit hardware design can make the enclosed mechanical structure simple and maintainable. It can also avoid the larger switch stresses caused by the multiple turn on of the IGBTs in conventional large-capacity converter systems. The use of the distributed controller design method based on a high-speed fiber-optic ring net for the control system can overcome such disadvantages as the poor reliability and long maintenance times arising from the conventional centralized controller which is designed according to point-to-point communication. Finally, the performance of the 20MW PWM driver is verified by experimentation on a new fifteen-phase induction propulsion motor.

대형 여객선 긴급 재난 시 구조 지원 통신 시스템 (Rescue Support Communication System in Case of Emergency of Large Passenger Ship)

  • 한율규;최영복
    • 한국콘텐츠학회논문지
    • /
    • 제19권7호
    • /
    • pp.192-198
    • /
    • 2019
  • 대형 크루즈와 같은 사람이 많이 승선하는 여객선이 침몰하거나 화재와 같은 재난 사고가 발생하였을 때 구조기관에서 신속하게 구조할 수 있도록 지원하는 통신 시스템을 제안한다. 선박 내부에 근거리 무선통신 장치 비콘을 설치하고 승객이 휴대한 단말기에서 블루투스 통신을 통해 실시간으로 승객의 위치와 상태를 파악하여 서버로 전송한다. 위급 상황 발생 시 서버에서 구조기관에 승객의 정보를 전송하며 승객에게는 위급상황을 알리고 대피를 유도한다. 설계한 시스템을 이용하여 모의실험을 실시한 결과 특정 지역에 반 이상에서 위급 상황이 발생하였을 때 서버에서 즉시 판단하여 모든 단말에 알리는 것을 확인하였다. 사고 선박의 위치를 알린다거나 단순히 승객의 선박 내 위치를 파악하는 기존의 시스템과 달리 실시간으로 사고를 탐지하고 모든 단말기로 알려주는 본 시스템은 승객의 신속한 피난과 구조에 많은 도움이 될 것으로 기대된다.

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

Experimental study on hydrogen behavior and possible risk with different injection conditions in local compartment

  • Liu, Hanchen;Tong, Lili;Cao, Xuewu
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1650-1660
    • /
    • 2020
  • Comparing with the large containment, the gas can not flow freely within the local compartment due to the small volume of the compartment in case of serious accident, which affects the hydrogen flow distribution, and it will determines the location where high concentration occurs in compartment. In this paper, hydrogen distribution and possible hydrogen risk in the vessel under the different conditions are investigated. The results show that when the initial gas momentum is increased, the ability of gas enters into the upper region of the vessel will be strengthened, and the hydrogen volume fraction in the upper region of the vessel is higher. Comparing with horizontal source direction, when source direction is vertically towards upper space, hydrogen is more likely to accumulate in the upper region of the vessel. With the increasing of steam mass flow, the dilution effect of steam on the hydrogen volume fraction will be strengthened, while the pressure in the vessel is also increased. When steam flow is decreased, the hydrogen explosion risk is higher in the vessel. The experiment data can provide technical support for the validation of the CFD software and the mitigation of hydrogen risk in the containment compartment.

Numerical analysis for hydrodynamic interaction effects between vessel and semi-circle bank wall

  • Lee, Chun-Ki;Moon, Serng-Bae;Oh, Jin-Seok;Lee, Sang-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.691-698
    • /
    • 2015
  • The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as wall effects. In this paper, the characteristics of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between vessel and semi-circle bank wall are discussed. For spacing between ship and semi-circle bank wall (SP) less than about 0.2 L and depth to ship's draft ratio (h/d) less than around 2.0, the ship-bank interaction effects increase steeply as h/d decreases. However, for spacing between ship and semi-circle bank wall (SP) more than about 0.3 L, the ship-bank interaction effects increase slowly as h/d decreases, regardless of the water depth. Also, for spacing between ship and semi-circle bank wall (SP) less than about 0.2 L, the hydrodynamic interaction effects acting on large vessel increase largely as ship velocity increases. In the meantime, for spacing between ship and semi-circle bank wall ($S_P$) more than 0.3 L, the interaction effects increase slowly as ship velocity increases.

Analysis on the discharge characteristics and spreading behavior of an ex-vessel core melt in the SMART

  • Sang Ho Kim;Jaehyun Ham;Byeonghee Lee;Sung Il Kim;Hwan Yeol Kim;Rae-Joon Park;Jaehoon Jung
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4551-4559
    • /
    • 2022
  • The aim of this research is to analyze the characteristics of a core melt discharged from the reactor vessel and the spreading behavior the core melt in the reactor cavity of the SMART. First, a severe accident sequence under conservative conditions is simulated by the MELCOR code to obtain the conditions for an analysis of the spreading behavior and coolability of the ex-vessel melt. Second, the spreading behavior and coolability of the ex-vessel melt are analyzed by the MELTSPREAD code. The level, temperature, and pressure of the water in the cavity as well as the temperature, mass, composition, and discharge velocity of the melt were utilized to construct the ex-vessel analysis. The melt spread only to part of the cavity, and that the height of the corium in a static state was less than 25 cm. The characteristics of a small modular reactor on the spreading behavior and coolability of melt were analyzed. In the SMART, the amount of melt discharged into the cavity is relatively small and the area of the cavity is sufficiently large when compared to a high-power pressurized water reactor. It was found that the coolability of an ex-vessel core melt can be sufficiently secured.